DOI QR코드

DOI QR Code

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements

조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성

  • Received : 2015.09.11
  • Accepted : 2015.12.27
  • Published : 2016.01.01

Abstract

The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

종래 브레이스시스템은 횡력저항 및 층변위제어에 효율적이며 골조물량 감소에 따른 경제성이 향상되어 일반적인 강구조 횡력저항시스템으로 적용되고 있다. 그러나 압축측에서 항복응력에 도달하기 전 가새의 좌굴이 발생하여 충분한 내력을 발휘하지 못하고, 내력열화형의 이력거동으로 불안정상태가 된다. 좌굴에 의한 내력저하 개선시스템으로 중심재를 구속하여 좌굴방지가 가능한 비좌굴가새는 심재의 항복 이후에도 안정적인 이력특성을 나타내어 종래 브레이스에 비하여 에너지흡수능력이 우수하다. 최근 10년간 미국, 일본 및 대만에서 매우 다양한 형상의 비좌굴가새가 제안되었으나, 기존의 실험연구에서는 그 형상이 매우 제한적인 경향을 보이고 있다. 본 연구에서는 조립형 Precast RC 보강재를 가지는 비좌굴가새를 제작하고 이력특성을 평가하기 위한 부재실험을 수행하였다. 또한 실험결과를 AISC(2005)의 요구조항과 비교하였다.

Keywords

References

  1. AISC (2005), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
  2. AISC/SEAOC (2001), Recommended Provisions for Buckling-Restrained Braced Frames.
  3. Chen, C.C., and Lu, L.W. (1990), Development and experimental investigation of a ductile CBF system, Proc. 4th NCEE, Palm Springs, CA, 2, 575-584.
  4. Chen, C.C. (2000), Seismic behavior and design of buckling inhibited braces and ductile CBF's, Structural Engineering, 15(1), 53-78.
  5. Chen, C.C., Chen, S.Y., and Liaw, J.J. (2001a), Application of low yield strength steel on controlled plastification ductile concentrically braced frames, Canadian Journal of Civil Engineering, 28, 823-836. https://doi.org/10.1139/l01-044
  6. Clark, P., Aiken, I., Kasai, K., Ko, E., and Kimura, I. (1999), Design procedures for buildings incorporating hysteretic damping devices, Proc. 69th Annual Convention of SEAOC, Sacramento, CA.
  7. Hasegawa, H., Takeuchi, T., Nakata, Y., Iwata, M., Yamada, S., and Akiyama, H. (1999), Experimental study on dynamic behavior of unbonded braces, AIJ J. Technol. Des., 9, 103-106.
  8. Iwata, M., Kato, T., and Wada, A. (2000), Buckling-restrained braces as hysteretic dampers, Proc. STESSA, Quebec, PQ, 33-38.
  9. Lopez, W.A., Gwie, D.S., Saunders, M., and Lauck, T.W. (2002), Lessons learned from large-scale tests of unbonded braced frame subassemblage, Proc. 71st Annual Convention of SEAOC, Sacramento, CA, 171-183.
  10. Sabelli, R., Mahin, S.A., and Chang, C. (2003), Seismic demands on steel braced-frame buildings with buckling-restrained braces, Engineering Structures, 25, 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X
  11. Shin, S.H. and Oh, S.H. (2014), Suggestion of new shape for buckling-restrained brace(Development of new shape BRB), 2014 Spring Conference of Korea Institute for Structural Maintenance and Inspection, 18(1), 663-666
  12. Tsai, K.C. and Lai, J.W. (2002), A study of buckling restrained seismic braced frame, Structural Engineering, 17(2), 3-32.
  13. Tsai, K.C., Hwang, Y.C., Weng, C.S., Shirai, T., and Nakamura, H. (2002), Experimental tests of large scale buckling restrained braces and frames, Proceedings, Passive Control Symposium, December 2002, Tokyo Institute of Technology, Tokyo, Japan.
  14. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M. (1988), Properties of brace encased in buckling-restraining concrete and steel tube, Proc. 9th WCEE, Tokyo-Kyoto, Japan, 4, 719-724.