• Title/Summary/Keyword: Laser-Interferometer

Search Result 366, Processing Time 0.031 seconds

Comparison of Torsional Vibration Measurement Techniques

  • Verrecas, B.;Janssens, K.;Britte, L.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.441-441
    • /
    • 2012
  • Noise and vibration performance plays an important role in the development of rotating components, such as engines, drivelines, transmission systems, compressors and pumps. The presence of torsional vibrations and other specific phenomena require the dynamic behaviour of systems and components to be designed accurately in order to avoid comfort and durability related problems. This paper provides an overview of the instrumentation and challenges related to torsional vibration testing. The accuracy and performance of five measurement techniques (high-speed incremental encoder, dual beam laser interferometer, zebra tape, zebra disc, direct pulse measurements with magnetic probe) is investigated by measurements on a Fiat Punto 1.4 liter engine. The potential sources of error are discussed to explain the inaccuracies of each technique.

  • PDF

Enhancement of a parabolic face working accuracy using volumetric error compensation of NC milling machine (NC 밀링머신의 Volumetric 오차보상을 통한 포물면 가공의 정밀도 향상)

  • 이찬호;정을섭;이응석;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.917-921
    • /
    • 2000
  • One of the major limitations of productivity and quality in machining is machining accuracy of the machine tools. The machining accuracy is affected by geometric, volumetric errors of the machine tools. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the generation of the parabolic face profile. And the method is verified by the parabolic face machining experiment with a vertical three axes NC milling machine. After this study, we will inspect using On-machine measurement and study the repetitive machining by a compensated path

  • PDF

Portable Calibration System for Displacement Measuring Sensors

  • Eom, Tae-Bong;Lee, Jae-Yun;Kim, Jae-Wan;Joon, Lyou
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.56-59
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

Geometric error compensation of machine tools by geometry redesign (형상 재 설계에 의한 공작기계 기하오차 보정)

  • 서성교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

Development of an Inchworm type Actuator for an Ultra Precise Linear Stage (초정밀 리니어 스테이지용 인치웜 타입 구동장치 개발)

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, Jung-Kee;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.309-312
    • /
    • 2002
  • Precision stage is essential device for semiconductor equipments, fiber optic assembly systems and micro machines. In this paper, we develop a piezo-electric inchworm type actuator for long stroke ultra precision linear stages, and implement a controller to interface with commercial motion controllers. It provides fast implementation of precise position control system substituting for rotary motor. In the future, using a laser interferometer as a position sensor, we plan to implement a nano meter precision stage.

  • PDF

Micro Displacement Sensor Using an Astigmatic Method (비점수차법을 이용한 변위센서 개발)

  • Lee C.W.;Song J.Y.;Ha T.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.257-258
    • /
    • 2006
  • This paper presents the displacement sensor based on astigmatic method that has a small measurement range. The sensor has the characteristic that the measuring range is changed easily by exchanging a objective lens or distance between a objective lens and a collimator lens. The measuring range and resolution is evaluated by a laser interferometer.

  • PDF

A study on the diagonal error compensation and squareness measurement of linear motor (리니어 모터의 직각도 측정과 대각선 오차 보정에 관한 연구)

  • Kim J.H.;Lee C.W.;Song J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.287-288
    • /
    • 2006
  • This paper introduces an approach of method to compensate accuracy error of diagonal direction. The measurement of squareness error is an important parameter in performance test of two axis Linear Motor and this exerts influence on accuracy error of diagonal test. However, previous knowledge management approaches are limited in deviation measurement of optical axis or restrictive elements of diagonal measurements using laser interferometer. But this proposed method calculated diagonal accuracy error which was occurred by squareness error and compensated squareness error using orthogonal correction method of PMAC. From this result, diagonal accuracy error is significantly reduced. This experimental results show that geometric error of squareness error is easily corrected by dynamic coordinate correction.

  • PDF

Deformation Analysis of Wall Thinning Pipe by Using Laser Measurement (레이저 계측을 이용한 곡관 감육부의 변형 해석)

  • Kim K.S.;Jung H.C.;Jung S.W.;Kwag J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.27-28
    • /
    • 2006
  • This study performs to investigate deformation of wall thinning pipe and to find out the position of the internal thinning defect by shearography. Shearography is one of optical methods those have applied to nondestructive testing (NDT) and the strain/stress analysis. This technique has the merit of the directly measuring the first derivative of displacement, sensitivity of which can be adjusted by the handling of optical component in interferometer. In this paper, we tested carbon steel pipe locally wall thinned and loaded internal pressure and developed the nondestructive out-of-plane deformation analysis technique fur internal thinning defect of elbow by shearography. From the results, it was confirmed that this technique is proper to the practical application on the pipe line system with internal defect.

  • PDF

A study on Measuring of Motion Accuracy of NC Machine Tools(No. 2) - about Measuring of Linear Cycle Positioning Accuracy of Machining Center - (NC 공작기계의 운동정도 측정에 관한 연구(제2보) -머시닝 센터의 직선 사이클 위치결정정도 측정에 관하여-)

  • Kim, Yeong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.51-51
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of Machining centers as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of each axes directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, measuring systems are organized to measure linear displacements of table or spindle of machine center using laser interferometer, magnescale and tick pulses comming out from computer in order to get data at constant time intervals from the sensors. And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

A Study on the Flatness Evaluation Method of the Dicing Chuck using Chucked-wafer (웨이퍼 장착을 이용한 다이싱 척의 평탄도 평가 방법에 관한 연구)

  • Yook, In-Soo;Lee, Ho-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • This study was conducted to evaluate the flatness of the porous type of dicing chuck. Two measurement systems for a vacuum chuck with a porous type of ceramic plate were prepared using a digital indicator and a laser interferometer. 6 inch of silicon and glass wafer were also used. Vacuum pressure from 100mmHg to 700mmHg by 100mmHg was increased. From experiments, chucked-wafer flatness was converged to the dicing chuck flatness itself even though the repeatability of contact method using indicator was unstable. Finally, the chuck flatness was estimated below $2{\mu}m$ with peak-to valley value.