• Title/Summary/Keyword: Laser-Assisted Machining

Search Result 61, Processing Time 0.059 seconds

A Fundamental Study on the Design of Two-axis Drive Manipulator for Laser-assisted Machining (레이저보조가공을 위한 2-축 구동 매니퓰레이터 설계에 관한 기초 연구)

  • Kim, Dong-Hyeon;Cha, Na-Hyeon;Kim, Tae-Woo;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.813-817
    • /
    • 2012
  • Laser assisted machining (LAM) is machining method that performs a machining for workpieces using laser beam preheating. LAM is in the early stage of its applications and has only been used in limited fields including turning, planning and micro end-milling throughout the world. LAM system should be able to move to the laser radiation direction and to rotate on a tool path for machining of complex shapes. A laser module with two-axis manipulator is designed in this study. It has been performed static structural analysis and shape modification of the manipulator. As the results of shape modification it has been obtained better results than the initial model. These results will be able to use in development of the two-axis manipulator.

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Analysis of Overlapping Heat Zones in Laser-Assisted Machining (레이저보조가공에서 중첩열원에 관한 해석 연구)

  • Baek, Jong-Tae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1023-1029
    • /
    • 2015
  • Laser-assisted machining (LAM) is one of the most effective methods for enhancing the machinability of difficult-to-cut materials, such as titanium alloys and various ceramics, and has been studied by many researchers. LAM is a method that facilitates machining by softening a workpiece using a laser heat source. The advantages of the LAM process are decreases in tool wear, cutting force, and surface roughness. However, when the material is over-heated, melting or burning can occur. This study analyzed the heat source distribution with regard to overlapping of preheating on the laser heating path with an acute angle, a right angle and obtuse angles. Then, a power reduction method was proposed to reduce the melting and burning of the workpiece.

The Basic Study on Machinability of Ceramics in CO2 Laser Assisted Machining (CO2 레이저 보조가공에 의한 세라믹재료의 가공성에 관한 기초 연구)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.322-329
    • /
    • 2009
  • Machinability of LAM(Laser Assisted Machining) has been studied for ceramics such as $Al_2O_3$, $Si_3_N4$ and $ZrO_2$ by $CO_2$ laser. It was possible to remove ceramics by PCBN tool because material became softening and deterioration by local laser beam irradiation. The advantage of LAM is the ability to produce larger material removal rates and tool life. But, for cutting of $Al_2O_3$ and $ZrO_2$, stage of laser power control was needed owing to thermal shock with high temperature of workpiece by laser power. And when $Si_3N_4$ was machined by LAM, $N_2$ gas spouted from surface of one cause of high temperature. Characteristics of LAM were analyzed using pyrometer, dynamometer, SEM and EDS to measure temperature of workpiece surface, cutting force, variation of machining surface and structure of lattice respectively. As the result of this study, it was found that machinability of LAM for ceramics in $CO_2$ laser and mechanism of LAM was different according to the kind of ceramics because of properties of materials.

A Study on the Development of the Rotary and Linear Laser Modules (회전식 및 직선식 레이저 모듈 개발에 관한 연구)

  • Sim, Min-Seop;Hwang, Seong-Ju;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • Recently, laser processing technologies have been developed in many different industrial fields. The laser processing technologies are widely being applied such as laser assisted machining, cladding, heat treatment and coating. In the laser modules of the laser assisted machining system, laser lens is very important for accuracy and productivity of product. As the laser beam size, shape and focusing distance change, heat input energy of preheating point can be changed, the laser module of the laser assisted machining system should be equipped with various lenses differing beam size, beam shape and focusing distance. In this study, the rotary and linear laser modules are suggested. The finite element analysis is carried out to certify the static and dynamic stabilities of the developed laser modules. Finally, the rotary and linear laser modules have been fabricated successfully using the analysis results.

Study on Accuracy Evaluation of Laser Lens Changer for a Laser-Assisted Machining System (레이저보조가공에서 레이저 렌즈 교환장치의 정밀도 평가에 관한 연구)

  • Oh, Won-Jung;Kim, Eun-Joong;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.687-692
    • /
    • 2015
  • LAM (Laser-Assisted Machining) is an effective method for processing difficult-to-cut workpieces. The focal length of a LAM system is changed by the change of the workpiece shape during laser preheating; this problem is solved by changing the lens of the laser module. Linear- and rotary-type lens changers were developed to change the laser lens of a LAM system. The linear-type lens changer is operated by a motor with a ball-screw, and the rotary type is operated by a stepping motor. The natural frequency and structural stability of the laser lens changers were confirmed by using a finite element analysis; in addition, the functions of the lens changers were verified by measuring the iterative accuracy. The measured results show that the rotary-type lens changer is more accurate than the linear-type changer.

Cutting Characteristics on Rake Angle in Laser-Assisted Machining of Silicon Nitride (질화규소의 예열선삭가공시 경사각에 따른 절삭특성)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Lim, Se-Hwan;Kim, Jong-Do;Lee, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2009
  • In the last few years, lasers have found new applications as tools for ceramic machining which is laser-assisted machining(LAM). LAM process for the machining of difficult-to-machine materials such as structural ceramics, has recently been studied on silicon nitride workpiece for a wide range of operating condition. However, there have been few studies on rake angle in LAM process. In this paper we analyzed difference of machinability between positive and negative rake angle in tools. We have obtained interesting results that we could eliminate chattering, lower specific cutting and cutting ratio in case of positive rake angle. The results suggest that positive rake angled tools can make more plastic deformation and stable cutting of silicon nitride in comparison with negative rake angled one.