• Title/Summary/Keyword: Laser patterning

Search Result 187, Processing Time 0.027 seconds

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Electrical Isolation of Ag Nanowire Film using Femtosecond Laser (펨토초 레이저를 이용한 은 나노 와이어 필름 전기적 절연)

  • Yoon, Ji-Wook;Park, Jung-Kyu;Boehme, Daniel;Zander, Sebastian;Cho, Sung-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.334-338
    • /
    • 2012
  • Electrical isolation of Ag nanowire, which is one of the candidates as electrode for display devices, on polymer with femtosecond pulse laser has been investigated. Line patterning to Ag nanowire with various pulse energy and scan speed were experimented. Duo to the results of the line patterning experiment, we fabricated the isolated squares and measured electrical resistance. The profile of the selectively ablated area was analyzed with AFM(Atomic Force Microscope). The width of the patterned line was $1.8\;{\mu}m$ and the depth was $1.6\;{\mu}m$. We demonstrated electrical isolation of the Ag nanowire using femtosecond laser by evaluating the electrical resistance of the sample between isolated and opened area.

Laser Head Design and Heat Transfer Analysis for 3D Patterning (3차원 패터닝을 위한 레이저 헤드설계 및 열해석)

  • Ye, Kang-Hyun;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.46-50
    • /
    • 2016
  • A laser head was designed for micro-scale patterning and joining applications. The target feature size of the pattern was $100{\mu}m$, and optics were designed to perform the target. Two singlet lenses were combined to minimize the chromatic aberration, and the geometry of the lenses was calculated by using the raytracing method with a commercial software program. As a restriction of lens design, the focal length was set at 100mm, and the maximum diameter of the lens or beam size was limited to 10mm for the assembly in the limited cage size. The maximum temperatures were calculated to be $1367^{\circ}C$, $1508^{\circ}C$, and $1905^{\circ}C$ for 10, 12, and 15 Watts of power, respectively. A specially designed laser head was used to compensate for the distance between the object and the lens. The detailed design mechanism and 3D data were presented. The optics design and detailed performance of the lens were analyzed by using MTF and spot diagram calculation.

The study of optimal reduced-graphene oxide line patterning by using femtosecond laser pulse (펨토초 레이저 펄스를 이용한 환원된 그래핀의 최소 선폭 패턴 구현에 관한 연구)

  • Jeong, Tae-In;Kim, Seung-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.157-162
    • /
    • 2020
  • In recent years, laser induced graphene process have been intensively studied for eco-friendly electronic device such as flexible electronics or thin film based energy storage devices because of its simple and effective process. In order to increase the performance and efficiency of an electronic device using such a graphene patterned structure, it is essential to study an optimized laser patterning condition as small as possible linewidth while maintaining the graphene-specific 2-dimensional characteristics. In this study, we analyzed to find the optimal line pattern by using a Ti:sapphire femtosecond laser based photo-thermal reduction process. we tuned intensity and scanning speed of laser spot for generating effective graphene characteristic and minimum thermal effect. As a result, we demonstrated the reduced graphene pattern of 30㎛ in linewidth by using a focused laser beam of 18㎛ in diameter.

Direct Patterning of 3D Microstructures on an Opaque Substrate Using Nano-Stereolithography (나노 스테레오리소그래피 공정을 이용한 불투명 기판에서의 3차원 마이크로 형상 제작 방법에 관한 연구)

  • Son, Yong;Lim, Tae-Woo;Ha, Cheol-Woo;Yang, Dong-Yol;Jung, Byung-Je;Kong, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.93-99
    • /
    • 2010
  • A nano-stereolithography is the direct patterning process with a nanoscale resolution using twophoton absorption induced by a femtosecond laser. However, in the majority of the works, the fabrication of 3D microstructures have been done only onto transparent glass due to the use of an oil immersion objective lens for achieving a high resolution. In this work, the coaxial illumination and the auto-focusing system are proposed for the direct patterning of nano-precision patterns on an opaque substrate such as a silicon wafer and a metal substrate. Through this work, 3D polymer structures and metallic patterns are fabricated on a silicon wafer using the developed process.

A Study on the Ablation of AZ5214 and SU-8 Photoresist Processed by 355nm UV Laser (355nm UV 레이저를 이용한 AZ5214와 SU-8 포토레지스트 어블레이션에 관한 연구)

  • Oh, J.Y.;Shin, B.S.;Kim, H.S.
    • Laser Solutions
    • /
    • v.10 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • We have studied a laser direct writing lithography(LDWL). This is more important to apply to micro patterning using UV laser. We demonstrate the possibility of LDWL and construct the fabrication system. We use Galvano scanner to process quickly micro patterns from computer data. And laser beam is focused with $F-{\theta}$ lens. AZ5214 and SU-8 photoresist are chosen as experimental materials and a kind of well-known positive and negative photoresist respectively. Laser ablation mechanism depends on the optical properties of polymer. In this paper, therefore we investigate the phenomenon of laser ablation according to the laser fluence variation and measure the shape profile of micro patterned holes. From these experimental results, we show that LDWL is very useful to process various micro patterns directly.

  • PDF

Micropatterning on Biodegradable Nanofiber Scaffolds by Femtosecond Laser Ablation Process (펨토초 레이저 절삭 공정을 이용한 생분해성 나노섬유 표면 미세 패터닝 공정)

  • Chung, Yongwoo;Jun, Indong;Kim, Yu-Chan;Seok, Hyun-Kwang;Chung, Seok;Jeon, Hojeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.555-559
    • /
    • 2016
  • A biodegradable nanofiber scaffolds using electrospining provide fibrous guidance cues for controlling cell fate that mimic the native extracellular matrix (ECM). It can create a pattern using conventional electrospining method, but has a difficulty to generate one or more pattern structures. Femtosecond(fs) laser ablation has much interested in patterning on biomaterials in order to distinguish the fundamental or systemic interaction between cell and material surface. The ablated materials with a short pulse duration using femtosecond laser that allows for precise removal of materials without transition of the inherent material properties. In this study, linear grooves and circular craters were fabricated on electrospun nanofiber scaffolds (poly-L-lactide(PLLA)) by femtosecond laser patterning processes. As parametric studies, pulse energy and beam spot size were varied to determine the effects of the laser pulse on groove size. We confirmed controlling pulse energy to $5{\mu}J-20{\mu}J$ and variation of lens maginfication of 2X, 5X, 10X, 20X created grooves of width to approximately $5{\mu}m-50{\mu}m$. Our results demonstrate that femtosecond laser processing is an effective means for flexibly structuring the surface of electrospun PLLA nanofibers.

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

Micro patterning of conductor line by laser induced forward transfer(LIFT) (LIFT 방법에 의한 전도성 미세 패터닝 공정 연구)

  • 이제훈;한유희
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.52-61
    • /
    • 1999
  • The laser induced forward transfer(LIFT) technique employs a pulsed laser to transfer parts of a thin metal film from an optically transparent target onto an arbitrary substrate in close proximity to the metal film on the target. In this work, a two-step method, the combination of LIFT process, in which a Au film deposited on the $Al_2$O$_3$ substrate by Nd:YAG laser and subsequent Au electroless metal plating on the by LIFT process generated Au seed, was presented. The influence of laser parameters, wavelength, laser power, film thickness and overlap ratio of pulse tracks, on the shapes of deposit and conductor line after electroless plating is experimentally studied. As a results, the threshold power densities for ablation, deposition and metallization were determined and comparison of threshold value between the wave length 1064nm and the second harmonic generated 532nm. In odor to determine a possible application in the electronic industry, a smallest conduct spot size, line width and isolated line space were generated.

  • PDF