• Title/Summary/Keyword: Laser arrays

Search Result 73, Processing Time 0.039 seconds

Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition (온벽 펄스 레이저 증착법을 이용해 합성한 Ga 도핑된 산화아연계 나노선 에탄올 가스 센서의 특성)

  • Jung, Da-Woon;Kim, Kyoung-Won;Lee, Deuk-Hee;Debnath, Pulak Chandra;Kim, Sang-Sig;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.594-598
    • /
    • 2011
  • We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.

Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm (자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발)

  • Um, Chul;Kim, Byung-Hee;Choi, Young-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

FPGA-based design and implementation of data acquisition and real-time processing for laser ultrasound propagation

  • Abbas, Syed Haider;Lee, Jung-Ryul;Kim, Zaeill
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.467-475
    • /
    • 2016
  • Ultrasonic propagation imaging (UPI) has shown great potential for detection of impairments in complex structures and can be used in wide range of non-destructive evaluation and structural health monitoring applications. The software implementation of such algorithms showed a tendency in time-consumption with increment in scan area because the processor shares its resources with a number of programs running at the same time. This issue was addressed by using field programmable gate arrays (FPGA) that is a dedicated processing solution and used for high speed signal processing algorithms. For this purpose, we need an independent and flexible block of logic which can be used with continuously evolvable hardware based on FPGA. In this paper, we developed an FPGA-based ultrasonic propagation imaging system, where FPGA functions for both data acquisition system and real-time ultrasonic signal processing. The developed UPI system using FPGA board provides better cost-effectiveness and resolution than digitizers, and much faster signal processing time than CPU which was tested using basic ultrasonic propagation algorithms such as ultrasonic wave propagation imaging and multi-directional adjacent wave subtraction. Finally, a comparison of results for processing time between a CPU-based UPI system and the novel FPGA-based system were presented to justify the objective of this research.

A Study on the Holographic Process for Photonic Crystal Fabrication (광자결정 제작을 위한 홀로그라피 공정 연구)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.726-730
    • /
    • 2007
  • Two dimensional photonic crystals (2D PCs) have been fabricated by a double exposure holographic method using a He-Cd laser with a wavelength of 442nm. The arrays of the 2D PCs exhibit variable lattice structures from square to triangle according to a change of rotating angle $({\gamma})$ for double exposure beams. In addition, the period and filling factor of PCs as well as the forms (dot or antidot) could be controlled by experimental conditions. $A l.18-{\mu}m-thick$ resist was spin-coated on Si substrate and the 1st holographic exposure was carried out at incident angle $({\theta})$ of $11^{\circ}$. Then the sample was rotated to ${\gamma}=45^{\circ}{\sim}90^{\circ}$ and the 2nd holographic process was performed at ${\theta}=11^{\circ}$. The variation of diffraction efficiency during the exposure process was observed using a He-Ne laser in real time. The images of 2D PCs prepared were analyzed by SEM and AFM. We believe that the double holographic method is a tool suitable to realize the 2D PCs with a periodic array of large area.

Characteristics of 32 × 32 Photonic Quantum Ring Laser Array for Convergence Display Technology (디스플레이 융합 기술 개발을 위한 32 × 32 광양자테 레이저 어레이의 특성)

  • Lee, Jongpil;Kim, Moojin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.161-167
    • /
    • 2017
  • We have fabricated and characterized $32{\times}32$ photonic quantum ring (PQR) laser arrays uniformly operable with $0.98{\mu}A$ per ring at room temperature. The typical threshold current, threshold current density, and threshold voltage are 20 mA, $0.068A/cm^2$, and 1.38 V. The top surface emitting PQR array contains GaAs multiquantum well active regions and exhibits uniform characteristics for a chip of $1.65{\times}1.65mm^2$. The peak power wavelength is $858.8{\pm}0.35nm$, the relative intensity is $0.3{\pm}0.2$, and the linewidth is $0.2{\pm}0.07nm$. We also report the wavelength division multiplexing system experiment using angle-dependent blue shift characteristics of this laser array. This photonic quantum ring laser has angle-dependent multiple-wavelength radial emission characteristics over about 10 nm tuning range generated from array devices. The array exhibits a free space detection as far as 6 m with a function of the distance.

Real-Time Measurement of the Liquid Amount in Cryo-Electron Microscopy Grids Using Laser Diffraction of Regular 2-D Holes of the Grids

  • Ahn, Jinsook;Lee, Dukwon;Jo, Inseong;Jeong, Hyeongseop;Hyun, Jae-Kyung;Woo, Jae-Sung;Choi, Sang-Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.298-303
    • /
    • 2020
  • Cryo-electron microscopy (cryo-EM) is now the first choice to determine the high-resolution structures of huge protein complexes. Grids with two-dimensional arrays of holes covered with a carbon film are typically used in cryo-EM. Although semi-automatic plungers are available, notable trial-and-error is still required to obtain a suitable grid specimen. Herein, we introduce a new method to obtain thin ice specimens using real-time measurement of the liquid amounts in cryo-EM grids. The grids for cryo-EM strongly diffracted laser light, and the diffraction intensity of each spot was measurable in real-time. The measured diffraction patterns represented the states of the liquid in the holes due to the curvature of the liquid around them. Using the diffraction patterns, the optimal time point for freezing the grids for cryo-EM was obtained in real-time. This development will help researchers rapidly determine high-resolution protein structures using the limited resource of cryo-EM instrument access.

An effective parallel optical interconnection using single GRIN rod lens (하나의 GRIN Rod Lens를 이용한 효율적 병렬 광연결)

  • Kim, Sung-Chul;Lee, Wook;Lee, Byoung-Ho;Jeong, Ji-Chai
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.49-54
    • /
    • 1997
  • We proved the feasibiltiy of a parallel optical interconnection technique using single GRIN (graded-index) rod lens as an intermediate coupling device, which increases the working distance and makes packaging easy. The proposed technique shows relatively less dependency on misalignments. In this paper, for convensience of experiments, we applied this method to 4-channel coupling between two fiber arrays, and compared it with butt-coupling and the method of using ball lens. The comparison shows the feasibility of adopting the proposed method to the parallel interconnection between a laser diode array and an optical fiber array.

  • PDF

Experimental Study of Flow Fields around Cylinder Arrays Using PIV (PIV를 이용한 두 원주 주위의 유동장에 관한 실험적 연구)

  • Jeon, Wan-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.83-88
    • /
    • 1996
  • 두 인접한 원주 유동장을 입자 영상 속도계를 이용하여 연구하였다. 실험은 회류수조에서 행하였다. 흐름방향에 평행하게 배치하는 방법과 직교배열의 두가지 방법으로 원주를 배열하였다. 연구 결과는 다른 연구자의 결과와 일치함을 보여주었다. 본 연구를 통하여 입자 영상 속도계를 이용한 유동장 해석이 대단히 효과적임을 알 수 있었다.

  • PDF

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

Array Mode Characteristics of Channeled-Substrate-Planar Phase Laser Arrays (CSP 레이저 어레이의 결합모드 특성)

  • ;吳煥述
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.936-943
    • /
    • 1986
  • The lasing wavelengths and gain characteristics of the array modes of channel-substrate planar(CSP) lasers are presented. The gain values of array modes are determined from the complex coupling coefficients calculated using the fields of neighborig elements of the array. The computations show that for index guided lasers which have fields that are almost real valued, or have only slight phase curvature, the highest order array mode will have preferred oscillation. The inphase or fundamental mode, which produces only one major lobe in the far-field radiation pattern, will have the lowest modal gain of all array modes. Some of the devices discussed have modal gain differences of less than 10 cm**-1 between the highest and fundamental modes. For optical field confinement factors of about 20%, this gain difference corresponds to avtive layer gains of approximately 50**-1.

  • PDF