Browse > Article

Label-Free Molecular Imaging of Living Cells  

Fujita, Katsumasa (Department of Applied Physics, Osaka University)
Smith, Nicholas Isaac (Department of Applied Physics, Osaka University)
Abstract
Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.
Keywords
coherent anti-Stokes Raman scattering; laser microscopy; molecular imaging; Raman scattering; second-harmonic generation; spectroscopy;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, OW., Olenych, S., Bonifacino, J.S., Davidson, MW., Lippincott-Schwartz, J., and Hess, H.F. (2006). Imaging intracellular fluorescecnet proteins at nanometer resolution. Science 313, 1642-1645   DOI   ScienceOn
2 Duncan, M.D., Reintjes, J., and Manuccia, 1.J. (1982). Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350-352   DOI
3 Hell, SW., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19,780-782   DOI
4 Nan, X., Cheng, J.-X., and Xie, X.S. (2003). Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44, 2202   DOI   ScienceOn
5 Puppels, G.J., Mul, F.F.M., Otto, C., Greve, J., Nicoud, M.R., Jovin, D.JA, and Jovin, T.M. (1990). Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347,301-303   DOI   ScienceOn
6 Puppels, G.J., Grond, M., and Grave, J. (1993). Direct imaging Raman microscop based on tunable wavelength excitation and narrow-band emission detection. Appl. Spectrosc. 47, 1256-1267   DOI   ScienceOn
7 Scalfi-Happ, C., Jauss, A., Ibach, W., Hollricher,O., Fulda, S., Hauser, C., Steiner, R., and Ruck, A. (2007). Confocal Raman microscopy as a diagnostic tool for investigation of living neuroblastoma tumour cells. Med. Las. Appl. 22, 157-164   DOI   ScienceOn
8 Spiro, T.G., and Strekas, T.C. (1972). Resonance Raman spectra of Heme proteins. Effects of oxidation and spin state. J. Am. Chem. Soc. 96, 338-345   DOI
9 Uzunbajakava, N., Lenferink, A., Kraan, V.E., Vrensen, G., Greve, J., and Otto, C. (2003). Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys. J. 84, 3968-3981   DOI   ScienceOn
10 Volkmer, A., Book, L.D., and Xie, X.S. (2002). Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay. Appl. Phys. Lett. 80, 1505-1507   DOI   ScienceOn
11 Yamanaka, M., Kawano, S., Fujita, K., Smith, N.I., and Kawata, S. (2008). Beyond the diffraction-limit biological imaging by saturated excitation microscopy. J. Biomed. Opt. 13,050507   DOI   ScienceOn
12 Denk, W., Strickler J.H., and Webb, W.w. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76   DOI
13 Boyd, RW. (2003). Nonlinear Optics Second Edition. Academic Press New York
14 Evans, C.L., Potma, E.O., and Xie, X.S. (2004). Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility X (3) for vibrational microscopy. Opt. Lett. 29, 2923-2925   DOI   ScienceOn
15 Evans, C.L., Xu, X., Kesari, S., Xie, X.S., Wong, S.T.C., Young, G.S. (2007). Chemically-selective imaging of brain structures with CARS microscopy. Opt. Exp. 15,12076-12087   DOI
16 Dombeck, DA, Blanchard-Desce, M., and Webb, WW. (2004). Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24, 999-1003   DOI   ScienceOn
17 Gustafsson, M.G.L. (2005). Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 1308113086
18 Hashimoto, M., and Araki, 1. (2001). Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. A 18,771-776   DOI   ScienceOn
19 Campagnola, P.J., Millard, A.C., Terasaki, M., Hoppe, P.E., Malone, C.J., and Mohler, WA (2002). Three-dimensional highresolution second-harmonic imaging of endogenous protein structural proteins in biological tissues. Biophysiology 82, 493-508   DOI
20 Hamada, K., Fujita, K., Smith, N.I., Kobayashi, M., Inouye, Y., and Kawata, S. (2008). Raman microscopy for dynamic molecular imaging of living cells. J. Biomed. Opt. 13, 044027   DOI   ScienceOn
21 Zumbusch, A., Holtom, G.R., and Xie, X.S. (1999). Threedimensional vibrational imaging by coherent anti-stokes Raman scattering. Phy. Rev. Lett. 82, 4142   DOI   ScienceOn
22 Oyamada, Y., Zhou, W., Oyamada, H., Takamatsu, 1., and Oyamada, M. (2002). Dominant-negative connexin43-EGFP inhibits calcium-transient synchronization of primary neonatal rat cardiomyocytes. Exp. Cell Res. 273, 85-94   DOI   ScienceOn
23 Cheng J.-X., Book L.D., and Xie, X.S. (2001). Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 26, 1341-1343   DOI
24 Ling, J., Weitman, S.D., Miller, MA, Moore, RV., and Bovik, A.C. (2002). Direct raman imaging techniques for studying the subcellular distribution of a drug. Appl. Opt. 41, 6006-6017   DOI
25 Boulesteix, 1., Beaurepaire, E., Sauviat, M., and Schanne-Klein, M. (2004). Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy. Opt. Lett. 29, 2031-2033   DOI   ScienceOn
26 Matthaus, C., Chernenko, T., Newmark, JA, Warner, C.M., and Diem, M. (2007). Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys. J. 93, 668-673   DOI   ScienceOn
27 Rust, M.J., Bates, M., and Zhauang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793-796   DOI   ScienceOn
28 Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. (2007). High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105   DOI   ScienceOn
29 Volkmer, A., Cheng, .Lx., and Xie, X.S. (2001). Vibrational imaging with high sensitivity via epidetected coherent anti Stokes Raman scattering microscopy. Phys. Rev. Lett. 87,023901   DOI   ScienceOn
30 Cheng, J-X., and Xie, X.S. (2004). Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J. Phys. Chem. B 108,827-840   DOI   ScienceOn
31 Campagnola, P.J., and Loew, L.M. (2003). Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356-1360   DOI   ScienceOn
32 Huang, Y.-S., Kawashima, T., Yamamoto, M., Ogawa,T., and Hamaguchi, H. (2004). Raman spectroscopic signature of life in a living yeast cell. J. Raman Spectro. 35, 525-526   DOI   ScienceOn
33 Evans, C.L., Potma, E.O., Puoris'haag, M., Cote, D., Lin, C.P., and Xie, X.S. (2005). Chemical imaging of tissue in vivo with videorate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102, 16807-16812
34 Harada, Y., Ota, 1., Dai, P., Yamaoka, Y., Hamada, K., Fujita, K., and Takamatsu, 1. (2008). Imaging of anticancer agent distribution by a slit-scanning Raman microscope. Proc. SPIE 6853, 685308
35 Hell, SW. (2007). Far-field optical nanoscopy. Science 316, 1153-1158   DOI   ScienceOn
36 Manen, H-K, Kraan, Y.M., Roos, D., and Otto, C. (2005). Singlecell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Nat. Acad. Sci. USA 102, 10159-10164
37 Manen, H-K, Kraan, Y.M., Roos, D., and Otto, C. (2004). Intercellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy. J. Phys. Chem. B 108,18762-18771   DOI   ScienceOn
38 Matthaus, C., Boydston-white, S., Miljkovic, M., Romeo, M., and Diem, M. (2006). Raman and infrared microspectral imaging of mitotic cells. Appl. Spectrosc. 60, 1-8   DOI   ScienceOn
39 Nan, X., Potma, E.O., and Xie, X.S. (2006). Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys. J. 91, 728-735   DOI   ScienceOn
40 Wurpel, GW.H., Schins, J.M., and Muller, M. (2002). Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 27, 1093-1095   DOI