• Title/Summary/Keyword: Laser Scanner

Search Result 546, Processing Time 0.031 seconds

The characteristic of penetration on the 800Mpa class high-tensile steel using remote welding system by $CO_2$ laser ($CO_2$ 레이저 원격 용접시스템을 이용한 800Mpa급 고장력강의 용입특성)

  • Song, M.J.;Lee, Y.J.;Song, Y.C.;Jung, S.M.;Jung, B.H.;Lee, M.Y.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.17-20
    • /
    • 2006
  • In the remote welding system using $CO_2$ laser, laser beam is rapidly deflected by moving mirrors of scanner system and has focusable distance over 1000mm from workpiece. From such arrangement, various advantages and disadvantages arise. Remote welding is a highly efficient laser process. As the mirrors of the scanner system allow positioning speeds exceeding 700m/s, it becomes possible to reduce the welding cycle time. On the other hand, as there no the provision of shielding gas which is normally required for beam powers exceeding 3kW, may become difficult task. Therefore, In this study, the influence of the various penetration of back bead by the different laser welding speed on the weld seam formation without shielding gas was investigated.

  • PDF

Data Acquisition using Terrestrial Laser Scanner and RTK-GPS for Implementation of Beach Model (해빈 모형 구현을 위한 지상용 레이저 스캐너와 RTK-GPS의 자료 획득)

  • Lee, Hyung-Seok;Kim, In-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2009
  • Various methods have been employed for acquiring beach surface data, which are used to monitor shoreline changes due to beach erosion. This study explores the possibility of constructing and implementing a surface model of beach using data acquired with a terrestrial laser scanner and RTK-GPS. Digital images and three-dimensional data of beach areas acquired at 20 cm intervals using a laser scanner were used to create a digital surface model covered with digital image. Seven months later, the beach area was surveyed using an RTK-GPS, and another beach model was constructed using the data collected with an accuracy of 1.9 cm. The use of a terrestrial laser scanner is expected to ensure acquisition of good quality results and help deal with seasonal changes in beach areas. Because readings obtained with the RTK-GPS are dependent on the number of sampling points in beach model, difficulties are encountered when fixing the survey points. However, RTK-GPS could be used to implement a three-dimensional model by correcting the hidden parts in images obtained using a terrestrial laser scanner. Therefore, an RTK-GPS and a terrestrial laser scanner can be used in combination to obtain more precise data for the construction of beach model data.

  • PDF

A Study on Reliability of Joint Orientation Measurements in Rock Slope using 3D Laser Scanner (3D Laser Scanner를 이용한 암반사면의 절리방향 측정의 신뢰성에 관한 연구)

  • Park, Sun-Hyun;Lee, Su-Gon;Lee, Boyk-Kyu;Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • We must precisely investigate the mechanical characters of rock to design rock slope safely and efficiently. But the method of clinometer has some disadvantages. So, we need a new measurement that can replace the method of clinometer. In this study, we analyze the reliability of joint orientation measurements in rock slope using the 3D laser scanner and program Split-FX that is a point cloud data analysis software. We could acquire the 495 pieces joint data through the automatic extraction of features. And we confirmed that there were some errors occurred with ${\pm}4^{\circ}$ of dip and ${\pm}5^{\circ}$ of dip direction. Generally, the method of clinometer has ${\pm}5^{\circ}$ and ${\pm}10^{\circ}$ error ranges of the joint orientation(dip/dip direction) that are the results of the advance research. Therefore, we analyzed the method of 3D laser scanner, and it is found to be efficient, reliable. This method is expected to mend the disadvantages of Clinometer method.

Interface between Robot and Scanner for Remote Laser Welding System Based on Time Synchronization (시간 동기화에 근거한 리모트 레이저 용접 시스템에서의 로봇과 스캐너 인터페이싱)

  • Kim, Jeong-Jung;Lee, Joon-Woo;Lee, Ju-Jang;Kwon, Kyung-Up;Kang, Hee-Shin;Suh, Jeong
    • Laser Solutions
    • /
    • v.16 no.1
    • /
    • pp.10-14
    • /
    • 2013
  • Remote laser beam welding (RLW) has the benefits of high speed and high quality welding, especially as applied to automotive industry. RLW is designed in a way that end effecter and head of scanner move simultaneously, and require the compensation for the motion of end effecter in order to weld proper position. In this paper, we show the algorithms of RLW that enable the end effecter to synchronize with scanner based on time. The proposed method consists of two algorithms. These algorithms make it possible for the moving end effecter to weld on desired place. The effectiveness of the algorithms is shown by experiments.

  • PDF

Study on Application of Reverse Engineering by Generation of the Free-Form Surface (자유 곡면 생성을 통한 역공학 적용에 관한 연구)

  • Hur, Sung-Min;Choi, Jae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.168-177
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and the measurement of clay or wood models fur the development of new products. To generate a surface from measured points by a laser scanner, typical steps include the scanning of a clay or wood model, the generation of compatible input curves, the generation of a surface and manufacturing data like G code or STL file. A laser scanner has a great potential to get geometrical data of a model for its frost measuring speed and higher precision. The data from a laser scanner are composed of many line stripes of points including small spikes and noise. A new approach using automated surface generating algorithm is introduced to deal with problems during reverse engineering process. And the input data and the generated surface are represented in IGES format, thus can be supplied to other CAD/CAM software without any data manipulation.

  • PDF

Laser-Scanner-based Stochastic and Predictive Working-Risk-Assessment Algorithm for Excavators (굴삭기를 위한 레이저 스캐너 기반 확률 및 예견 작업 위험도 평가 알고리즘 개발)

  • Oh, Kwang Seok;Park, Sung Youl;Seo, Ja Ho;Lee, Geun Ho;Yi, Kyong Su
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.14-22
    • /
    • 2016
  • This paper presents a stochastic and predictive working-risk-assessment algorithm for excavators based on a one-layer laser scanner. The one-layer laser scanner is employed to detect objects and to estimate an object's dynamic behaviors such as the position, velocity, heading angle, and heading rate. To estimate the state variables, extended and linear Kalman filters are applied in consideration of laser-scanner information as the measurements. The excavator's working area is derived based on a kinematic analysis of the excavator's working parts. With the estimated dynamic behaviors and the kinematic analysis of the excavator's working parts, an object's behavior and the excavator's working area such as the maximum, actual, and predicted areas are computed for a working risk assessment. The four working-risk levels are defined using the predicted behavior and the working area, and the intersection-area-based quantitative-risk level has been computed. An actual test-data-based performance evaluation of the designed stochastic and predictive risk-assessment algorithm is conducted using a typical working scenario. The results show that the algorithm can evaluate the working-risk levels of the excavator during its operation.

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.