• Title/Summary/Keyword: Laser Point Sensor

Search Result 111, Processing Time 0.025 seconds

An Optical Fiber Perimeter Guard System Using OTDRs (OTDR을 이용한 광섬유 외곽경비시스템에 관한 연구)

  • Chang, Jin-Hyeon;Lee, Yong-Cheol;Shin, Dong-Ho;Oh, Sang-Gun;Lee, Jong-Youn;Jung, Jin-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1236-1243
    • /
    • 2010
  • The perimeter defense system was created and its characteristics were evaluated. It was designed to utilize the fiber sensing device, namely OTDR(Optical Time Domain Reflectometer) which has been used for the maintenance of the optical communication network. An OTDR was constituted by a pulse laser with the nature of 1310nm, +15dBm for the observation of 400 meter optical fence. The high-speed 32-bit processor(S3C2440) has applied to MPU(Main Processor Unit) which helps to improve the performance of OTDR algorithms. Consequently, the maximum error was 0.84 meter on the performance test of the 10km monitoring and the pass criteria of ${\pm}1m$ satisfied in all the sections. The alarm delay time was under 3 sec after detecting the disorder. For the case of secondary trespassing after primary trespassing, the optical switch was installed in OTDR to monitor the secondary trespassing and to measure the multi-point detection. Therefore, this paper shows that the detections of secondary trespassing and multi-point is possible by means of optical switch.

3D Model Generation and Accuracy Evaluation using Unmanned Aerial Oblique Image (무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.587-593
    • /
    • 2019
  • The field of geospatial information is rapidly changing due to the development of sensor and data processing technology that can acquire location information. And demand is increasing in various related industries and social activities. The construction and utilization of three dimensional geospatial information that is easy to understand and easy to understand can be an essential element to improve the quality and reliability of related services. In recent years, 3D laser scanners are widely used as 3D geospatial information construction technology. However, 3D laser scanners may cause shadow areas where data acquisition is not possible when objects are large in size or complex in shape. In this study, 3D model of an object has been created by acquiring oblique images using an unmanned aerial vehicle and processing the data. The study area was selected, oblique images were acquired using an unmanned aerial vehicle, and point cloud type 3D model with 0.02 m spacing was created through data processing. The accuracy of the 3D model was 0.19m and the average was 0.11m. In the future, if accuracy is evaluated according to shooting and data processing methods, and 3D model construction and accuracy evaluation and analysis according to camera types are performed, the accuracy of the 3D model will be improved. In the point cloud type 3D model, Cross section generation, drawing of objects, and so on, it is possible to improve work efficiency of spatial information service and related work.

Developing and Valuating 3D Building Models Based on Multi Sensor Data (LiDAR, Digital Image and Digital Map) (멀티센서 데이터를 이용한 건물의 3차원 모델링 기법 개발 및 평가)

  • Wie, Gwang-Jae;Kim, Eun-Young;Yun, Hong-Sic;Kang, In-Gu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2007
  • Modeling 3D buildings is an essential process to revive the real world into a computer. There are two ways to create a 3D building model. The first method is to use the building layer of 1:1000 digital maps based on high density point data gained from airborne laser surveying. The second method is to use LiDAR point data with digital images achieved with LiDAR. In this research we tested one sheet area of 1:1000 digital map with both methods to process a 3D building model. We have developed a process, analyzed quantitatively and evaluated the efficiency, accuracy, and reality. The resulted differed depending on the buildings shape. The first method was effective on simple buildings, and the second method was effective on complicated buildings. Also, we evaluated the accuracy of the produced model. Comparing the 3D building based on LiDAR data and digital image with digital maps, the horizontal accuracy was within ${\pm}50cm$. From the above we derived a conclusion that 3D building modeling is more effective when it is based on LiDAR data and digital maps. Using produced 3D building modeling data, we will be utilized as digital contents in various fields like 3D GIS, U-City, telematics, navigation, virtual reality and games etc.

Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources (디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석)

  • Ko, Chi-Ung;Yim, Jong-Su;Kim, Dong-Geun;Kang, Jin-Taek
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.245-256
    • /
    • 2021
  • This study was conducted to identify the applicability of a LiDAR sensor to forest resources inventories by comparing data on a tree's position, height, and DBH obtained by the sensor with those by existing forest inventory methods, for the tree species of Criptomeria japonica in Jeolmul forest in Jeju, South Korea. To this end, a backpack personal LiDAR (Greenvalley International, Model D50) was employed. To facilitate the process of the data collection, patterns of collecting the data by the sensor were divided into seven ones, considering the density of sample plots and the work efficiency. Then, the accuracy of estimating the variables of each tree was assessed. The amount of time spent on acquiring and processing the data by each method was compared to evaluate the efficiency. The findings showed that the rate of detecting standing trees by the LiDAR was 100%. Also, the high statistical accuracy was observed in both Pattern 5 (DBH: RMSE 1.07 cm, Bias -0.79 cm, Height: RMSE 0.95 m, Bias -3.2 m), and Pattern 7 (DBH: RMSE 1.18 cm, Bias -0.82 cm, Height: RMSE 1.13 m, Bias -2.62 m), compared to the results drawn in the typical inventory manner. Concerning the time issue, 115 to 135 minutes per 1ha were taken to process the data by utilizing the LiDAR, while 375 to 1,115 spent in the existing way, proving the higher efficiency of the device. It can thus be concluded that using a backpack personal LiDAR helps increase efficiency in conducting a forest resources inventory in an planted coniferous forest with understory vegetation, implying a need for further research in a variety of forests.

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

Goal-directed Obstacle Avoidance Using Lane Method (레인 방법에 기반한 이동 로봇의 장애물 회피)

  • Do, Hyun-Min;Kim, Yong-Shik;Kim, Bong-Keun;Lee, Jae-Hoon;Ohba, Kohtaro
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2009
  • This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacleis recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.

  • PDF

A Study for The X-ray Image Acquisition Experiment Using by Gas Electron Multipliers (기체전자증폭기를 이용한 X-선 영상획득실험에 관한 연구)

  • 강상묵;한상효;조효성;남상희
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.83-89
    • /
    • 2003
  • The gas electron multiplier placed in the drift volume of conventional gas detectors, is a conceptually simple device for producing a large gas gain by concentrating the drift electric field over a very short distance to the point that electron avalanching occurs(〉 10$^4$ V/cm), greatly increasing the number of drifting electrons. This device consists of a thin insulating foil of several tens of urn in thickness. covered on each side with a thin metal layer(Cu), with tiny holes, usually 100 ${\mu}{\textrm}{m}$ or less in diameter. and with a spacing of 100-200 ${\mu}{\textrm}{m}$ through the entire foil. perforated by using chemical etching or high-powered laser beam technique In this study, we have investigated its operating properties with various experimental conditions, and demonstrated the possibility of using this device as a digital X-ray imaging sensor, by acquiring X-ray images based on the scintillation properties of the gas electron multiplier with standard CCD camera.

Study on the line tracer robot applying the intellectual PID (지적 PID를 적용한 라인 트레이스 로봇에 관한 연구)

  • Lee, Dong-Heon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Choi, Myoung-Hoon;Lim, Jae-Jun;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.731-733
    • /
    • 2016
  • The primary goal of the line tracer is to accurately and quickly detect the movement up to the target position given by the sensor juhaengseon. It has been used in applications in various fields such as the current unmanned transport vehicles, laser cutting machine, autonomous mobile robots and unmanned driving is possible, and is held annually at various universities in the competition field with the possibility of great progress, depending on the application. However, there arises a large difference in running performance, depending on the hardware design and control. In this paper, improving the characteristics of the tracer line and characters to design a PID controller is to apply the point on ways of improving the properties of the system.

  • PDF

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.