• 제목/요약/키워드: Laser Plasma

검색결과 575건 처리시간 0.033초

External Optical Modulator Using a Low - cost Fabry - Perot Laser Diode for Optical Access Networks

  • Lee, Hyuek-Jae;Won, Yong-Hyub
    • Journal of the Optical Society of Korea
    • /
    • 제8권4호
    • /
    • pp.163-167
    • /
    • 2004
  • We propose and demonstrate an external optical modulation method based on TE/TM-mode absorption nulls in a Multiple Quantum Well(MQW) Fabry-Perot laser diode(FP-LD). The center wavelength of the absorption nulls is rapidly shifted to short-wavelength by the small current change(~1mA) in the FP-LD, which can modulate an optical signal with more than 10 dB of extinction ratio(ER). The shift of the center wavelength comes from the refractive index change due to anomalous dispersion and the plasma effect in MQW FP-LD waveguide. Non-inverting and inverting signals are made by TE- and TM-mode absorption nulls at 155.52 Mbps and BERs for the signals are measured.

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing

  • Kim, Jae Joon;Kim, Hyun Gil;Ryu, Ho Jin
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2054-2063
    • /
    • 2020
  • The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at 900, 1000, and 1100 ℃ for 20 h. The microstructures of the samples before and after oxidation were examined by scanning electron microscopy and transmission electron microscopy. The results showed that the oxide layer of zirconium silicide exhibited a layer-by-layer structure of crystalline ZrO2 and amorphous SiO2, and the high-temperature oxidation resistance was superior to that of Zircaloy-4 owing to the SiO2 layer formed. ZrSi2 was coated on the Zircaloy-4 tube surface using laser 3D printing, and the coated tube was oxidized for 2000 s at 1200 ℃ under a vapor/argon mixture atmosphere. The outer surface of the coated tube was hardly oxidized (10-30 ㎛), while the inner surface of the uncoated tube was significantly oxidized to approximately 300 ㎛.

Au/Au-Sn 이종접합 적용 레이저 패키징을 통한 Vapor Cell 신뢰성 연구 (Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction)

  • 권진구;전용민;김지영;이은별;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.367-372
    • /
    • 2020
  • As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.

Evaluation of Acceptor Binding Energy of Nitrogen-Doped Zinc Oxide Thin Films Grown by Dielectric Barrier Discharge in Pulsed Laser Deposition

  • Lee, Deuk-Hee;Chun, Yoon-Soo;Lee, Sang-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.200-203
    • /
    • 2011
  • In this research, nitrogen (N)-doped zinc oxide (ZnO) thin films have been grown on a sapphire substrate by dielectric barrier discharge (DBD) in pulsed laser deposition (PLD). DBD has been used as an effective way for massive in-situ generation of N-plasma under conventional PLD process conditions. Low-temperature photoluminescence spectra of N-doped ZnO thin films provided near-band-edge emission after a thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound excitation peak ($A^{\circ}X$) that indicated acceptor doping of ZnO with N. The acceptor binding energy of the N acceptor was estimated to be approximately 145 MeV based on the results of temperature-dependent photoluminescence (PL) measurements.

무차원 변수 해석을 이용한 LSP 공정변수 영향 분석 (Study on Effect of LSP Process Parameters Using Dimensionless Analysis)

  • 김주희;김태양;김윤재
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1141-1149
    • /
    • 2013
  • 복잡한 물리적 현상에 대한 수학적 모델을 만들기 위해 적용되는 차원해석은 LSP 공정변수의 영향을 이해하는데 중요한 도구가 된다. 본 연구에서는 버킹검(Buckingham) ${\prod}$이론을 이용한 차원해석을 통해 레이저 충격 피닝의 잔류응력 결과에 영향을 미치는 변수를 확인하고, 유한요소법을 이용하여 LSP 공정변수인 최대압력파, 압력파 지속시간, 레이저 샷 크기 및 다중 LSP 에 대한 잔류응력 결과를 확인하였다.

고밀도 플라즈마 광에 의한 Ti:SAPPHIRE 레이저의 동작 (The output characteristics of Ti:Sapphire laser pumped by dense plasma light)

  • 허서구;양호근;김명환;손연규;윤지홍
    • 한국광학회지
    • /
    • 제10권2호
    • /
    • pp.157-161
    • /
    • 1999
  • 실험실에서 제작한 HCP와 IPS를 이용하여 Ti:Sapphire 레이저를 발진시키고 그 특성을 조사하였다. 레이저의 문지방 에너지 1.39kJ로 나타났다. 레이저 효율은 LD-490의 농도 10$\times$10-3Mol/l일 때 가장 높은 효율을 나타내었으며, LD-490의 농도가 낮으면 효율도 감소하는 것으로 나타났다. 레이저의 출력은 5.42 kJ의 입력 에너지에 대해 287mJ이었다. Ar의 방출대와 일치하는 BBQ(bis[2-butyloctyl)oxy]quatephenyl)를 LD-490과 1:1로 혼합하여 에너지 전환제로 사용한 결과 측정한 전구간에 걸쳐 출력 에너지가 증가하였고 문지방 에너지가 LD-490만을 사용할 때 보다 0.22 kJ이 낮아진 1.17 kJ이었다.

  • PDF

A Novel Classification of Polymorphs Using Combined LIBS and Raman Spectroscopy

  • Han, Dongwoo;Kim, Daehyoung;Choi, Soojin;Yoh, Jack J.
    • Current Optics and Photonics
    • /
    • 제1권4호
    • /
    • pp.402-411
    • /
    • 2017
  • Combined LIBS-Raman spectroscopy has been widely studied, due to its complementary capabilities as an elemental analyzer that can acquire signals of atoms, ions, and molecules. In this study, the classification of polymorphs was performed by laser-induced breakdown spectroscopy (LIBS) to overcome the limitation in molecular analysis; the results were verified by Raman spectroscopy. LIBS signals of the $CaCO_3$ polymorphs calcite and aragonite, and $CaSO_4{\cdot}2H_2O$ (gypsum) and $CaSO_4$ (anhydrite), were acquired using a Nd:YAG laser (532 nm, 6 ns). While the molecular study was performed using Raman spectroscopy, LIBS could also provide sufficient key data for classifying samples containing different molecular densities and structures, using the peculiar signal ratio of $5s{\rightarrow}4p$ for the orbital transition of two polymorphs that contain Ca. The basic principle was analyzed by electronic motion in plasma and electronic transition in atoms or ions. The key factors for the classification of polymorphs were the different electron quantities in the unit-cell volume of each sample, and the selection rule in electric-dipole transitions. The present work has extended the capabilities of LIBS in molecular analysis, as well as in atomic and ionic analysis.

레이저 가공에 있어서 키홀의 동적거동 (Dynamic Bechavior of the keyhole in Laser Processing)

  • 김종도
    • 해양환경안전학회지
    • /
    • 제3권2호
    • /
    • pp.23-31
    • /
    • 1997
  • The results of high speed photography, acoustic emission detection and plasma UV radiation intensity measurement during CO2 laser welding of stainless steel 304 are presented. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of a high speed melt flow which originated from the part of weld pool and flowed along the sides wall of keyhole was confirmed by the slag motion on the weld pool. the characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal acoustic emission (AE) and light emission (LE) spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. (The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation.) The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

  • PDF

분리형 펄스 레이져 증착법을 이용한 ZnO 박막의 특성에 관한 연구 (Preparation of High Quality ZnO Thin Films by Separated Pulsed Laser Deposition)

  • 박상무;이붕주
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.818-824
    • /
    • 2008
  • The Separated Pulsed Laser Deposition (SPLD) technique uses two chambers that are separated by a conic metallic wall with a central orifice. The pressures of ablation chamber and deposition chamber were controlled by the differential vacuum system. We deposited zinc oxide (ZnO) thin films by SPLD method to obtain high quality thin films. When the bias voltage of +500 V was applied between a substrate and an orifice, the ZnO thin film was deposited efficiently. The deposited ZnO thin film at ablation chamber gas pressure of Ar 5 mTorr showed the sharpest ultraviolet absorption edge indicatory the band gap of about 3.1 eV. ZnO thin films were deposited using effect of electric and magnetic fields in the SPLD method. E${\times}$B drift happened by an electric fields and a magnetic fields, activated plasma plume, as a result the film surface became very smooth. When the bias voltage of +500 V and magnet of 0,1 T were applied the ZnO thin films surface state showed high quality. Grain size was 41.99 nm and RMS was 0.84 nm.

RF Ar 플라즈마에서의 레이저 어블레이션 모델링 (Modeling of the Laser Ablation under the RF Ar Plasmas)

  • 소순열;임장섭;이진;정해덕;박계춘;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1408-1409
    • /
    • 2007
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present modeling, we adopt capacitively coupled plasma with ring electrode inserted in the space between the substrate and the target, graphite. This system may take an advantage of ${\mu}m$-sized droplets from the sheath electric field near the substrate. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF