• Title/Summary/Keyword: Laser Chemical Vapor Deposition

Search Result 123, Processing Time 0.024 seconds

Laser-induced chemical vapor deposition of tungsten micro patterns for TFT-LCD circuit repair (레이저 국소증착을 이용한 TFT-LCD회로 수정5 미세 텅스텐 패턴 제조)

  • Park Jong-Bok;Kim Chang-Jae;Park Sang-Hyuck;Shin Pyung-Eun;Kang Hyoung-Shik;Jeong Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.165-173
    • /
    • 2005
  • This paper presents the results for deposition of micrometer-scale metal lines on glass for the development of TFT-LCD circuit repair-system. Although there had been a few studies in the late 1980's for the deposition of metallic interconnects by laser-induced chemical vapor deposition, those studies mostly used continuous wave lasers. In this work, a third harmonic Nd:YLF laser (351nm) of high repetition rates, up to 10 KHz, was used as the illumination source and W(CO)s was selected as the precursor. General characteristics of the metal deposit (tungsten) such as height, width, morphology as well as electrical properties were examined for various process conditions. Height of the deposited tungsten lines ranged from 35 to 500 m depending on laser power and scan speed while the width was controlled between 50um using a slit placed in the beam path. The resistivity of the deposited tungsten lines was measured to be below $1{\Omega}{\cdotu}um$, which is an acceptable value according to the manufacturing standard. The tungsten lines produced at high scan speed had good surface morphology with little particles around the patterns. Experimental results demonstrated that it is likely that the deposit forms through a hybrid process, namely through the combination of photolytic and pyrolytic mechanisms.

Growth Characteristics of Micro Carbon Structures Fabricated by Laser-Assisted Chemical Vapor Deposition (레이저 국소증착법에 의한 탄소 미세 구조물의 제조시 성장특성에 관한 연구)

  • Kim, Jin-Beom;Lee, Seon-Gyu;Lee, Jong-Hyeon;Jeong, Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.106-115
    • /
    • 2002
  • Growth characteristics of micro carbon structures fabricated by laser-assisted chemical vapor deposition are studied. Argon ion laser and ethylene were used as the energy source and reaction gas, respectively, to grow micro carbon rod through pyrolytic decomposition of the reaction gas. Experiments were performed at various conditions to investigate the influence of process parameters on growth characteristics such as the diameter or growth rate of the micro carbon rod with respect to reaction gas pressure and incident laser power. Reaction gas pressure in experiments ranges from 200 to 600Torr and the incident laser power from 0.3 to 3.8W. For these conditions, the diameter of the rod increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below IW. For a constant reaction gas pressure, the growth rate increase with Increasing laser power, but the rate of increase decreases gradually, implying that the chemical vapor deposition condition changes from a kinetically-limited regime to a mass-transport-limited regime. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 287${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated..

Machining of Diamond Films with Copper Vapor Laser (구리증기레이저를 이용한 다이아몬드막의 가공)

  • 박영준;백영준
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • Cutting and planarization of diamond films have been performed using copper vapor laser under air at-mosphere. Diamond films of about 350${\mu}{\textrm}{m}$ and 800 ${\mu}{\textrm}{m}$ thick have been synthesized with DC plasma assisted chemical vapor deposition. The position of a specimen has been controlled by computer-driven stage. With copper vapor laser beam of 7W cutting depth increases rapidly and saturates with increasing scan number and decreasing scan speed. 8 repetitive scans at scan speed 0.5 mm/sec produce the maximum cutting depth without focus shifting Rod-shape copper vapor laser beam can be made and used effectively in planar-ization of rough diamond surface.

  • PDF

Evaluation of 1.3-㎛ Wavelength VCSELs Grown by Metal Organic Chemical Vapor Deposition for 10 Gb/s Fiber Transmission

  • Park, Chanwook;Lee, Seoung Hun;Jung, Hae Won;An, Shinmo;Lee, El-Hang;Yoo, Byueng-Su;Roh, Jay;Kim, Kyong Hon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.313-317
    • /
    • 2012
  • We have evaluated a 1.3 ${\mu}m$ vertical-cavity surface-emitting laser (VCSEL), whose bottom mirror and central active layer were grown by metal organic chemical vapor deposition (MOCVD) and whose top mirror was covered with a dielectric coating, for 10 Gb/s data transmission over single-mode fibers (SMFs). Successful demonstration of error-free transmission of the directly modulated VCSEL signals at data rate of 10 Gb/s over a 10 km-long SMF was achieved for operating temperatures from $20^{\circ}C$ to $60^{\circ}C$ up to bit-error-rate (BER) of $10^{-12}$. The DC bias current and modulation currents are only 7 mA and 6 mA, respectively. The results indicate that the VCSEL is a good low-power consuming optical signal source for 10 GBASE Ethernet applications under controlled environments.

Single-phase Gallium Nitride on Sapphire with buffering AlN layer by Laser-induced CVD

  • Hwang Jin-Soo;Lee Sun-Sook;Chong Paul-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • The laser-assisted chemical vapor deposition (LCVD) is described, by which the growth of single-phase GaN epitaxy is achieved at lower temperatures. Trimethylgallium (TMG) and ammonia are used as source gases to deposit the epitaxial films of GaN under the irradiation of ArF excimer laser (193 nm). The as-grown deposits are obtained on c-face sapphire surface near 700$^{\circ}$C, which is substantially reduced, relative to the temperatures in conventional thermolytic processes. To overcome the lattice mismatch between c-face sapphire and GaN ad-layer, aluminum nitride(AlN) is predeposited as buffer layer prior to the deposition of GaN. The gas phase interaction is monitored by means of quadrupole mass analyzer (QMA). The stoichiometric deposition is ascertained by X-ray photoelectron spectroscopy (XPS). The GaN deposits thus obtained are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and van der Pauw method.

Onset on the Rate Limiting Factors of InP Film Deposition in Horizontal MOCVD Reactor (수평형 MOCVD 반응기 내의 InP 필름성장 제어인자에 대한 영향 평가)

  • Im, Ik-Tae;Sugiyama, Masakazu;Nakano, Yoshiyaki;Shimogaki, Yukihiro
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.73-78
    • /
    • 2003
  • The InP thin films grown by metalorganic chemical vapor deposition (MOCVD) are widely used to optoelectronic devices such as laser diodes, wave-guides and optical modulators. Effects of various parameters controlling film growth rate such as gas-phase reaction rate constant, surface reaction rate constant and mass diffusivity are numerically investigated. Results show that at the upstream region where film growth rate increases with the flow direction, diffusion including thermal diffusion plays an important role. At the downstream region where the growth rate decreases with flow direction, film deposition mechanism is revealed as a mass-transport limited. Mass transport characteristics are also studied using systematic analyses.

  • PDF

Fabrication of three dimensional microstructures using laser direct writing technique (레이저묘화 기술을 이용한 3차원 미세구조물 제조)

  • 정성호;한성일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.670-673
    • /
    • 2003
  • Fabrication of three dimensional microstructures by laser-assisted chemical vapor deposition of material is investigated. To fabricate microstructures, a thin layer of deposit in desired patterns is first written using laser direct writing technique and on top of this layer a second layer is deposited to provide the third dimension normal to the surface. By depositing many layers. a three dimensional microstructure is fabricated. Optimum deposition conditions for direct writing of initial and subsequent layers with good surface quality and profile uniformity are determined. Using an arson ion laser and ethylene as the light source and reaction gas, respectively, fabrication of three-dimensional carbon microstructures is demonstrated.

  • PDF

Laser Patterning of Vertically Grown Carbon Nanotubes (수직성장된 탄소나노튜브의 선택적 패터닝)

  • Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1171-1176
    • /
    • 2012
  • The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.