• Title/Summary/Keyword: Large-scale optimization

Search Result 376, Processing Time 0.029 seconds

Large-Scale Fermentation for the Production of Teicoplanin From a Mutant of Actinoplanes teichomyceticus

  • LEE JAE-CHAN;MIN JUNG-WON;PARK DONG-JIN;SON KWANG HEE;YOON KI-HONG;PARK HAE-RYONG;PARK YOUNG-SOO;KWON MU-GIL;LEE JUNG-MIN;KIM CHANG-JIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.787-791
    • /
    • 2005
  • Mutation and its pilot-scale fermentation were conducted for the production of teicoplanin from Actinoplanes teichomyceticus. The fermentation medium was optimized by replacement and Plackett-Burman experimental design. A maximum production of 1,500 mg/l teicoplanin was obtained by pilot-scale fermentation in an optimized medium containing (g/l): 30 g maltodextrin, 5 g glucose, 5 g yeast extract, 5 g soybean meal, 0.5 g $MgSO_4{\cdot}7H_2O$, 0.1 g NaCl, 0.1 g $CaCl_2{\cdot}2H_2O$, and 50 g Diaion HP-20. The production of teicoplanin was improved 3-fold from the parental strain by mutation, media optimization, and fermentation, and laboratory-scale fermentation was successfully demonstrated in a pilot-scale fermenter for the industrial production of teicoplanin.

Stiffness-Based Optimization for the Lateral Drift Control of Outrigger System (아웃리거시스템의 횡변위제어를 위한 강성최적화 기법)

  • Lee, Han-Joo;Park, Young-Sin;Nam, Kyung-Yun;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.210-215
    • /
    • 2008
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift and evaluates the structural behavior characteristics and efficiency for tall outrigger system subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of outrigger system is established and approximation concept that can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing technique of member is developed. Two types of 60 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Protective Devices Allocation Optimization for Electrical Distribution System

  • Bupasiri, Rosawan;Wattanapongsakorn, Naruemon;Hokierti, Jamnarn
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.433-436
    • /
    • 2002
  • Most of electric distribution utilities have their reliability performance measured by reliability indices such as SAIFI and SAIDI to evaluate customer satisfaction. Adding protective devices in electrical distribution system can increase the system reliability by protecting public customers from local faults. In large-scale distribution system, it is difficult to determine the positions of these protective devices, which can efficiently protect customers within utilities' investment. In this paper, we propose an optimization technique to identify types and positions of protective devices to minimize SAIFI and SAIDI indices according to system requirement constraints.

  • PDF

A Combined Model of Trip Distribution, Mode Choice and Traffic Assignment (교통분포, 수단선택 및 교통할당의 결합모형)

  • Park, Tae-Hyung
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.474-482
    • /
    • 2002
  • In this paper, we propose a parametric optimization approach to simultaneously determining trip distribution, mode choice, and user-equilibrium assignment. In our model, mode choice decisions are based on a binomial logit model and passenger and cargo demands are divided into appropriate mode according to the user equilibrium minimum travel time. Underlying network consists of road and rail networks combined and mode choice available is auto, bus, truck, passenger rail, and cargo rail. We provide an equivalent convex optimization problem formulation and efficient algorithm for solving this problem. The proposed algorithm was applied to a large scale network examples derived from the National Intermodal Transportation Plan (2000-2019).

Dynamic Optimization of Active Queue Management Routers to Improve Queue Stability

  • Radwan, Amr
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1375-1382
    • /
    • 2015
  • This paper aims to introduce the numerical methods for solving the optimal control theory to model bufferbloat problem. Mathematical tools are useful to provide insight for system engineers and users to understand better about what we are facing right now while experiment in a large-scale testbed can encourage us to implement in realistic scenario. In this paper, we introduce a survey of the numerical methods for solving the optimal control problem. We propose the dynamic optimization sweeping algorithm for optimal control of the active queue management. Simulation results in network simulator ns2 demonstrate that our proposed algorithm can obtain the stability faster than the others while still maintain a short queue length (≈10 packets) and low delay experience for arriving packets (0.4 seconds).

A STOCHASTIC VARIANCE REDUCTION METHOD FOR PCA BY AN EXACT PENALTY APPROACH

  • Jung, Yoon Mo;Lee, Jae Hwa;Yun, Sangwoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1303-1315
    • /
    • 2018
  • For principal component analysis (PCA) to efficiently analyze large scale matrices, it is crucial to find a few singular vectors in cheaper computational cost and under lower memory requirement. To compute those in a fast and robust way, we propose a new stochastic method. Especially, we adopt the stochastic variance reduced gradient (SVRG) method [11] to avoid asymptotically slow convergence in stochastic gradient descent methods. For that purpose, we reformulate the PCA problem as a unconstrained optimization problem using a quadratic penalty. In general, increasing the penalty parameter to infinity is needed for the equivalence of the two problems. However, in this case, exact penalization is guaranteed by applying the analysis in [24]. We establish the convergence rate of the proposed method to a stationary point and numerical experiments illustrate the validity and efficiency of the proposed method.

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.

Optimal Power Flow of DC-Grid Based on Improved PSO Algorithm

  • Liu, Xianzheng;Wang, Xingcheng;Wen, Jialiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1586-1592
    • /
    • 2017
  • Voltage sourced converter (VSC) based direct-current (DC) grid has the ability to control power flow flexibly and securely, thus it has become one of the most valid approaches in aspect of large-scale renewable power generation, oceanic island power supply and new urban grid construction. To solve the optimal power flow (OPF) problem in DC grid, an adaptive particle swarm optimization (PSO) algorithm based on fuzzy control theory is proposed in this paper, and the optimal operation considering both power loss and voltage quality is realized. Firstly, the fuzzy membership curve is used to transform two objectives into one, the fitness value of latest step is introduced as input of fuzzy controller to adjust the controlling parameters of PSO dynamically. The proposed strategy was applied in solving the power flow issue in six terminals DC grid model, and corresponding results are presented to verify the effectiveness and feasibility of proposed algorithm.

A study on mathematical modeling by neural networks (신경회로망을 이용한 수학적 모델에 관한 연구)

  • 이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.624-627
    • /
    • 1992
  • Mathematical modeling is majorly divided into three parts: the derivation of models, the fitting of models to data, and the simulation of data from models. This paper focuses on the parameter optimization which is necessary for the fitting of models to data. The method of simulated annealing(SA) is a technique that has recently attracted significant attention as suitable for optimization problem of very large scale. If the temperature is too high, then some of the structure created by the heuristic will be destroyed and unnecessary extra work will be done. If it is too low then solution is lost, similar to the case of a quenching cooling schedule in the SA phase. In this study, therfore, we propose a technique of determination of the starting temperature and cooling schedule for SA phase.

  • PDF

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.