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Dynamic Optimization of Active Queue Management
Routers to Improve Queue Stability

Amr Radwan†

ABSTRACT

This paper aims to introduce the numerical methods for solving the optimal control theory to model

bufferbloat problem. Mathematical tools are useful to provide insight for system engineers and users

to understand better about what we are facing right now while experiment in a large-scale testbed can

encourage us to implement in realistic scenario. In this paper, we introduce a survey of the numerical

methods for solving the optimal control problem. We propose the dynamic optimization sweeping algorithm

for optimal control of the active queue management. Simulation results in network simulator ns2

demonstrate that our proposed algorithm can obtain the stability faster than the others while still maintain

a short queue length (≈ packets) and low delay experience for arriving packets (0.4 seconds).
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1. INTRODUCTION

The domination of the Internet by transport con-

trol protocol TCP-based services has drew many

efforts to provide high network utilization with low

loss and delay in a simple and scalable manner.

Active queue management (AQM) algorithms at-

tempt to achieve these goals by regulating queues

at bottleneck links to provide useful feedback to

TCP sources. While many AQM algorithms have

been proposed and deployed, such as DropTail [1]

and RED [2], most of them suffer from instability

problem of queue [3]. In fact, a queue with small

buffer size, overflow occurs frequently and drop-

ping rate increases. On the other hand, a queue

with large buffer size results into long end-to-end

delay while throughput is saturated, i.e., TCP/

AQM performance degradation problem. To stabi-

lize queue performance, mathematical methods

such as control theory [2] or dynamic optimization

[4,5,6] can be applied to derive a suitable AQM al-

gorithm with the purpose of maintaining the stabil-

ity of queuing system in network routers.

As a frontier, control theory has been exploited

for a long time in AQM research community. The

basis is the fluid-flow nonlinear model proposed

by Hollot et al. [2]. This model has two main equa-

tions describes the interaction between TCP Reno

protocol and an AQM algorithm. Queue length is

calculated at each time step by getting difference

between the queue length value (at time t) and the

desired queue length value, and controlling accord-

ing to that difference. Control algorithms, such as

proportional integral (PI) [2], cascade probability

control (CPC) [7] have been applied to improve the

quality of the dynamic TCP/AQM system. They,

however, address only the subset of the stability

problem. For example, PI controller tries to regu-

late queue length close to a constant value without

considering of throughput stability.
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Fig. 1. Numerical Methods for OCPs.

The second class of solutions is numerical

methods for solving optimal control of TCP/AQM

model. There are many numerical methods able to

solve the optimal control problems. The traditional

approach to solving the optimal control problem

entails first forming the optimality conditions, us-

ing the calculus of variations and Pontryagin's

minimum principle, and then solving the resulting

boundary value problem (BVP). The most popular

methods for solving BVP are multiple shooting and

collocation methods. This is known as the indirect

approach for solving the optimal control problem.

The references present just a small sample of the

work that discusses or applies indirect approaches

for the solution of optimal control problems [4,5,6].

Alternatively, one can a priori discretize the gov-

erning ordinary differential equations and the in-

tegral terms in the constraint functions or objective

functional and thereby replace the infinite dimen-

sional optimal control problem with a large non-

linear optimization problem. This is known as the

direct method for solving the optimal control

problems.

Our main contributions can be summarized as

following:

•We develop a dynamic optimization sweeping

algorithm based on the calculus of variations and

Pontryagin's minimum principle for handling these

kind of active queue management problem, briefly

we call it as DO-AQM algorithm. The primary ad-

vantages of DO-AQM algorithm are easy to im-

plement and no need to the initial guess for the ad-

joint functions (Section IV).

•We provide a simulation results of the pro-

posed scheme for optimal control problem of

TCP/AQM model (Section V).

The remainder of this paper is organized as fol-

low: We will give a brief survey on the numerical

methods for solving the optimal control problem in

section II. The pros and cons for these methods

are given as well. In section III, we present the di-

rect approach for solving optimal control of

TCP/AQM. Section IV describes the DO-AQM al-

gorithm for solving our TCP/AQM model. Section

V gives our simulation results of the proposed

scheme and section VI finally concludes the paper.

2. RELATED WORK

Numerical methods for solving optimal control

of TCP/AQM problems fall into two general cate-

gories as depicted in Fig. 1: indirect methods and

direct methods. In an indirect method, first order

necessary conditions for optimality are derived
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from the optimal control via the calculus of varia-

tions. These necessary conditions form a Hamilto-

nian boundary-value problem (BVP), which is then

solved for extermal trajectories. The optimal sol-

ution is the found by choosing the extermal tra-

jectory with lowest cost. In rare cases the solution

can be obtained in closed form from the optimality

conditions, but in general of these problems gen-

erally take the form of:

• Differential algebraic equations (DAE) with

boundary conditions.

• Parametric nonlinear optimization problem

(Parametric NOP). According to the Pontryagin's

minimum principle, the Hamiltonian function must

optimized by the control variables at all points

along the solution trajectory. For solving the

Parametric NOP, one way is using the path-fol-

lowing method (PAFO). The other direction for

solving the Parametric NOP is to discrete the prob-

lem then use the first or the second order sweeping

methods based on the linearization or riccati equa-

tions, respectively (see Fig. 1). The primary ad-

vantages of indirect methods are their high accu-

racy in the solution and assurance that the solution

satisfies the first-order optimality conditions.

However, indirect approach have several dis-

advantages, including small radius of convergence,

the need to analytically derive the BVP, an initial

guess for the costate (adjoint), and if the path con-

straints are present, a priori knowledge of the con-

strained and unconstrained arcs. In a direct meth-

od, the continuous-time optimal control problem is

converted to a nonlinear optimization problem

(NOP) and the resulting NOP can be solved nu-

merically using well-known software, for instant:

• L-Rambo, which is a solver for NOP with

equality and inequality constraints. L-Rambo uses

a total quasi Newton approach with line search and

a working set strategy.

• Genetic algorithm solver (GAs) as Galib

[8]. By using the GAs, there is no need to calculate

the derivatives. However, the cost functional does

not reach to the local solution as it claims in finding

the global solution [4].

Although direct approach do not suffer from the

disadvantages of the indirect method, many pro-

vide either an inaccurate costate or no costate in-

formation whatsoever. Fig.1 summarizes the nu-

merical methods for OCPs. For more details on

thess methods, we refer the reader to [4,5,6].

3. SYSTEM MODEL

3.1 Problem Formulation      

We consider a network with a set of  of links

and let  be the capacity of link , for     .

Let a route  be a non-empty subset of , and let

 be the set of possible routes. Let  be a  ×  

matrix, set    i f ∈ so that route  traverses

link  and set    otherwise. Let route  gen-

erates at rate  , the dynamical systems can be

written as:

  


 





  

 

∀     (1)

   
  

 

   ∀     (2)

Where, the state of system     can be

described by the input rate of each user and the

queue length at each router. Therefore, the ODE

system (1-2) has the following state variables at

time     for      , and  for  

   , where  denotes the queue length of

router  at time  . Here, the control variable is

defined as the dropping probability of router  at

time  and is denoted by , for     . To

stabilize queue lengths, we define the following

functional objective for ODE (1-2) as:

  
  

  

       (3)

where  is a constant denoting the desirable queue

length. For more details on this model, we refer

the reader to [9].
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3.2 Direct Approach

In a direct method, the continuous-time optimal

control problem (1-3) is converted to a nonlinear

optimization problem (NOP) as:

min 
  

  

       (4)

subject to

                   

(5)

                   

(6)

where,     


 





  

 

 and

     
  

 

   .

The resulting NOP (4-6) can be solved numeri-

cally then using well-known software[8], which

attempt to satisfy a set of conditions, called

Karush-Kuhn-Tucker (KKT) conditions:




 


 

   
   





   





 




 


 

   
   





  





 

where,  is the Lagrangian function defined

as:

  
  

  

 
  



  
      


  



  
      

           , the symbol 

denotes the transpose operation and   are the

adjoint variables.

4. DO-AQM ALGORITHM

To derive the DO-AQM, we firstly form the op-

timality conditions for problem (1-3), using the

calculus of variations and Pontryagin's minimum

principle and then solving the resulting boundary

value problem. By defining the Hamiltonian func-

tion as:

          

        
   

where   are the adjoint functions. The Euler

Lagrange equations are given by:

      ∇ 
      

       

      ∇ 
      

       

and the adjoint equations as:

      ∇ 
      

        

      ∇ 
      

        

and the stationarity condition is:

∇
        

This leads to the following DO-AQM algorithm:

The DO-AQM algorithm is shown in Table 1.

The first line shows the initialization for the control

 , the tolerance , and the maximum number of

iterations . Line 3 shows the initialization

for the state functions   . It is obvious that

at each iteration  of DO-AQM Algorithm consists

of two sweeps, the original sweep (see the line 4

of Table 1) and backward sweep (see the line 11),

through the time interval    which one should

integrate forward and backward, respectively, in

time to obtain the state and the adjoint functions

(see lines: 9, 10, 13, 14). In case   , adjust the

piecewise-constant control function by:

      

where,  is the step size from, see lines 5, 6, and

7. In line 16, we notice also that the algorithm ter-

minates if the norm of the gradient of the

Hamiltonian w. r. t. the control , during the run

time of the program is smaller than the tolerance

 or the maximum number of iterations has been

reached.
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Table 1. DO-AQM Algorithm

1: Choose initial control trajectory      

2: Do:

3: Original initialization  

4: Original sweep   →

5: if   :

6:   arg  



  

   
 

7:       

8: integrate forward:

9:   
  

  ∇
 

  



  

   
         

10:   
  

  ∇
 

  



  

   
         

11: Backward sweep   →

12: integrate backward:

13:   
  

  ∇
 

 



  

   
          

14:   
  

  ∇
 

  



  

   
          

15:    

16:   ∥∇
∥≤  and   

Fig. 2. Simulated network topology with multi-bottlenecks.

5. PERFORMANCE EVALUATION

5.1 Setup

We develop a simulation model to verify the per-

formance of the proposed DO-AQM scheme using

the packet-level network simulator ns-2 [10]. The

chosen topology in Fig. 2 is a multi-bottleneck

network which has been recommend to evaluating

active queue management schemes [7,11,12]. There

are totally  senders, specifically we pick   , 

switches and one receiver. Each sender con-

tinuously sends FTP data using TCP Reno trans-

port protocol to the receiver. We conduct three

tests for performance comparison purpose between

our proposed DO-AQM algorithm and the two

current deployed schemes, e.g, DropTail and

Adaptive-RED (ARED). The simulation time in

ns-2 is measured in unit of ticks, i.e, each tick is

approximately equal to  seconds. The results

are then written into ns-2 trace files format and

further processed using awk script language.

5.2 Results and compared with other approaches

In this section, we analyze our produced results

from simulation ns2 and compare DO-AQM with

other approaches of current deployed AQMs. At
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Fig. 3. Queue length in packets at bottlenecks.

the first glance, from Fig. 3, we can see our pro-

posal achieves the lowest queue length value.

Through time, the queue length evolves as

saw-tooth shapes. These saw-tooth shapes imply

that our proposed model works correctly because

we assume additive increase multiplicative de-

crease (AIMD) in our model in the section III. With

the lowest queue length value of DO-AQM, the

performance of queue inside router is the best be-

cause the bottleneck links are not busy all time.

Therefore, new arrival packets will be accepted by

transport protocols (in this simulation example, we

use TCP Reno as transport protocols).

Secondly. the delay comparison results are pre-

sented in Fig. 4. We can easily realize that there

is a similarity between queue length and delay re-

sults of all AQMs which are the saw-tooth shapes.

In case of our proposed DO-AQM in Fig. 4(c), we

can see that delay peak of DO-AQM is approx-

imately (sec), while DropTail sometimes re-

sults into large delay of (sec). These interesting

results confirm that DropTail has a problem of long

waiting time in queue for every accepted packets

which motivates us to consider dynamic opti-

mization active queue management implementation.

Finally, we show the end-to-end throughput

comparison for different active queue management

schemes (Fig. 5). There are two kinds of through-

puts in networking area. The first one is in-

discriminate throughput (in short, throughput)

which is the average amount data received by the

receiver per unit time, regardless of whether the

data is re-transmission or not. The second one is

good throughput (in short, goodput) which is the

average amount data received by the receiver per

unit time that are not re-transmitted. In the scope

of this article, we focus on indiscriminate through-

put only to evaluate user-experience. Looking into

our result in Fig. 5(c), we can see that DO-AQM

brings a good stability in throughput values. While

DropTail and ARED's throughput are oscillated so

much (from  to  Mbps), our proposed scheme

DO-AQM is more stable, i.e. the throughput value

is small oscillated from  to 0.18 Mbps.
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Fig. 4. Delay comparison for different AQM schemes. 

Fig. 5. Throughput comparison for different AQM schemes.

6. CONCLUSION

There are several approaches to handle the opti-

mal control problem. We have proposed a dynamic

optimization sweeping methods for solving the op-

timal control of AQM model. Although the DO-

AQM approach needs to derive the adjoint equa-

tions which is not easy for some practical problems
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but it is much faster and more accurate than the

direct approach. Simulation results in network

simulator ns2 demonstrate that our proposed algo-

rithm are also discussed.
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