• Title/Summary/Keyword: Large span spatial structure

Search Result 42, Processing Time 0.018 seconds

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

A Study on the Establishment Feature and the Development of Large Space Buildings in Korea (국내 대공간 건축의 발달과정과 건립특성에 관한 연구)

  • Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.65-75
    • /
    • 2009
  • For the large space buildings since 1960s in Korea spanned more than 30m, the establishment feature and the development process were examined. As the Results, physical facilities with 40-70m span were mainly established in 1980s-1990s, but large scale convention centers have been establishing after 2000s as the used of large space buildings are varied. Also, a space frame has been generally used in 1980s while the unique structural shapes were builded in the early age(1960s), the structural design with concerns a form and using various structural systems have been attempting after 2000s.

  • PDF

Tensile Strength on Connection Socket of Cables (케이블 연결 소켓의 인장강도)

  • Park, Kang-Geun;Lee, Jang-Bok;Ha, Chae-Won;Kim, Jae-Bong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.37-42
    • /
    • 2008
  • Cable member in structure is tension systems in which the load carrying members transmit loads to support system by tensile stress with no compression or flexure allowed. Cable system have been widely used large span structure roof, air-supported structure, prestressed membrane, cable network roof, suspension structures, guyed tower, ocean platforms, suspension bridges. Cable member can transmit loads by the edge connected system such as socket, swaging, mechanical splice sleave, clip, wedge, loop splice etc. This study will shown an experimental results on the strength of connection socket of cables. In the results of experiment, most of cable connection specimen occurred the failure at the connection socket part before the cable arrived at tensile failure load.

  • PDF

A Case Study of Retraction Controlled Wind Velocity on the Steel Retractable Roof of Large Span (강성개폐식 대공간 지붕의 개폐 관리풍속 사례 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • The retractable roof structures have actions of various types of loads and external forces depending on the retraction and operation conditions of the roof in terms of efficiency of control and maintenance as the aspect of structural plan. In particular, there is a need for studies on the establishment of retraction controlled wind velocity to maintain the stable control and usability of roof structure against strong winds or sudden gusts during the retraction of the roof. In this paper, it was intended to provide basic materials for the development of guidelines on the operation and maintenance of domestic retractable buildings with large space by analyzing the factors affecting the retraction controlled wind velocity for the overseas stadiums with the large spatial retractable roof structures where the sliding system was applied on the steel retractable systems. As a result, the controlled wind velocity tends to decrease as the retractable roof area increases. On the other hand, the controlled wind velocity tends to increase as the retraction time increases. In addition, in the space-grid roof structures, the spherical roof structures type showed the average controlled wind velocity of 10m/sec lower than that of 17.3m/sec for curved-roof structure type, and in the curved-roof structure type, the truss roof structure showed the average controlled wind velocity of 8.9m/sec which is lower than that of 17.3m/sec for the space for the space-grid roof structure.

Mechanical Behavior of Cable Net Structures Considering Sag Ratio (새그 비를 고려한 케이블 네트 구조물의 역학적 거동)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.47-58
    • /
    • 2016
  • Cable network system is a flexible lightweight structure which curved cables can transmit only tensile forces. The weight of cable roof dramatically can reduce when the length becomes large. The cable network system is too flexible, most cable systems are stabilized by pretension forces. The tensile force of cable system is greatly influenced by the sag ratio and pretension forces. Determining initial sag ratio of cable roof system is essential in a design process of cable structures. Final sag ratio and pretension depends on initial installed sag and on proper handling during installation. The design shape of cable system has an affect on the sag and pretension, and must be determined using well-defined design philosophy. This paper is carried out the comparative data of the deflection and tensile forces on the geometric non-linear analysis of cable network systems according to sag ratio. The study of cable network system is provided to technical informations for the design of a large span cable roof, analytical results are compared with the results of other researchers. Structural nonlinear analysis of systems having cable elements is relatively complex than other rigid structural systems because displacements are large as a reason of flexibility, initial prestress is applied to cables in order to increase the rigidity, and then divergence of nonlinear analysis occurs rather frequently. Therefore, cable network systems do not exhibit a typical nonlinear behavior, iterative method that can handle geometric nonlinearities are necessary.

Experimental and Application Examples of Composite Beams Strengthened by Lower End Compression Member and Upper Tension Reinforcement (단부 하부 압축재와 상부 인장 철근으로 보강한 합성보의 실험 및 적용 사례 연구)

  • Oh, Jung-Keun;Shim, Nam-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2019
  • The BX composite beam is designed to have the same cross-section regardless of the size of the momentum, which is a disadvantage of the existing steel structure. Combination of the H-beam end compressive material and the H-section steel tensile reinforcement according to the moment size in a single span, It is possible to say that it is an excellent synthesis which increases the performance. When underground and overhead structures are constructed, it is possible to reduce the bending, increase lateral stiffness, reduce construction cost, and simplify joints. The seamability of the joining part is a simple steel composite beam because of the decrease of the beam damping at the center of the beam and the use of the end plate of the new end compressing material. In the case of structures with long span structure and high load, it is advantageous to reduce the material cost by designing large steel which is high in price at less than medium steel.

The Cause Analysis of Greenhouse Damage for Heavy Snow using Large Displacement Analysis (폭설시 대변위해석을 이용한 온실의 피해원인 분석)

  • Park, Soon-Eung;Lee, Jong-Won;Lee, Suk-Gun;Lee, Hyun-Woo;Choi, Jae-Hyouk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • The collapsing accidents of pipe greenhouses in the farmhouse have been increased duo to heavy snow load. However, the study on exact structure analysis to prevent the collapse of pipe greenhouses is rare and the damage of the farmhouse is annually repeated. The method of existing structure analysis is basically made of linear elastic analysis based on the micro displacement. But the actual stiffness of the pipe greenhouse is significantly weaker than the stiffness of buildings and the load acting on the greenhouses gets to become relatively bigger. It means that the geometry shape of greenhouses changes so that the relation of strain-displacement gets to indicate a nonlinear behavior. Therefore, this study is performed to evaluate the structural safety so as to prevent the collapse of pipe greenhouses, which are the single-span greenhouse(farmhouse guidance shape, G) and multi-span greenhouse(farmhouse supply shape, 1-2W), by performing the large-displacement analysis considering nonlinear effects.

  • PDF

A Study of Nonlinear Unstable Phenomenon of Framed Space Structures Considering Joint Rigidity (절점 강성을 고려한 공간 구조물의 비선형 불안정 거동에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Hwang, Kyung-Ju;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.87-97
    • /
    • 2003
  • The structural system that discreterized from continuous shells is frequently used to make a large space structures. As well these structures show the unstable phenomena when a load level over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. In our real situation, most structures have semi-rigid joint that has middle characteristic between pin and rigid joint. So the knowledge of semi-rigid joint is very important problem of stable large space structure. And the instability phenemena of framed space structures show a strong non-linearity and very sensitive behavior according to the joint rigidity For this reason In this study, we are investigating to unstable problem of framed structure with semi-rigidity and to grasp the nonlinear instability behavior that make the fundamental collapse mechanism of the large space frame structures with semi-rigid joint, by proposed the numerical analysis method. Using the incremental stiffness matrix in chapter 2, we study instability of space structures.

  • PDF

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

A study on the static seimic loads for the space structures of beam string structure (장현보구조형식을 가지는 공간구조물의 정적지진하중 평가법에 관한 연구)

  • Kim, Kwang-Il;Jung, Chan-Woo;Kang, Joo-Won
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.127-132
    • /
    • 2008
  • Recent years, the response characteristics of large space structures have been studied. Then, for the large space structures with large rise-span ratio, it is clarified that the anti-symmetric mode are representatively amplified. That means the static seismic load for general ramen structure is not suitable for the space structure. In this paper, we propose static seismic loads for space structures and its concept. And for the space structures of beam string structures, execute the time history analysis and quasi static analysis and compare the results of them. From the results, we can prove the validity of static seismic load for space structure.

  • PDF