• 제목/요약/키워드: Large settlement

검색결과 409건 처리시간 0.022초

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.

Structure damage estimation due to tunnel excavation based on indoor model test

  • Nam, Kyoungmin;Kim, Jungjoo;Kwak, Dongyoup;Rehman, Hafeezur;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.95-102
    • /
    • 2020
  • Population concentration in urban areas has led traffic management a central issue. To mitigate traffic congestions, the government has planned to construct large-cross-section tunnels deep underground. This study focuses on estimating the damage caused to frame structures owing to tunnel excavation. When constructing a tunnel network deep underground, it is necessary to divide the main tunnel and connect the divergence tunnel to the ground surface. Ground settlement is caused by excavation of the adjacent divergence tunnel. Therefore, predicting ground settlement using diverse variables is necessary before performing damage estimation. We used the volume loss and cover-tunnel diameter ratio as the variables in this study. Applying the ground settlement values to the settlement induction device, we measured the extent of damage to frame structures due to displacement at specific points. The vertical and horizontal displacements that occur at these points were measured using preattached LVDT (Linear variable differential transformer), and the lateral strain and angular distortion were calculated using these displacements. The lateral strain and angular distortion are key parameters for structural damage estimation. A damage assessment chart comprises the "Negligible", "Very Slight Damage", "Slight Damage", "Moderate to Severe Damage", and "Severe to Very Severe Damage" categories was developed. This table was applied to steel frame and concrete frame structures for comparison.

점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구 (A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds)

  • 유광호;정선태
    • 한국지반환경공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.29-40
    • /
    • 2019
  • 최근 터널 시공 시 여러 위험요인을 감안하여 보다 안전한 터널의 시공을 위하여 해상이나 하상 밑의 연약지반에서, 도심터널공사나 주요 구조물 하부 통과를 위해서 기계화 시공의 빈도가 높아지고 있다. 그러나 굴착으로 인한 지표면의 침하거동 산정이 어려워 간편하게 예측하는 식이 필요한 실정이다. 따라서 본 연구에서는 연약지반에 병렬로 터널이 시공되어지는 경우 침하거동에 대해 보다 간단한 식과 기존에 Peck(1969)이 제안한 이론을 근거로 연약지반 및 대구경 shield 터널에서 적용 가능한 수정식을 제안하고자 하였다. 이를 위해 최대 침하량, 지반조건에 따른 침하범위, 병렬시공에 따른 간섭 체적손실 등의 장기간의 계측값을 분석하였다. 그 결과 굴착면 상부가 퇴적점토인 연약지반에서 간편하게 최대 침하량을 산정할 수 있는 식을 제시하였는데, Peck(1969)의 식보다 국내 계측데이터에 더 적합한 것으로 나타났다.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

매입 개단 강관말뚝의 하중분담률과 침하량 분석 연구 (A Study on the Load Sharing Ratio and the Settlement of Prebored Open-Ended Steel Pipe Piles)

  • 김채민;김기환;윤도균;최용규
    • 한국지반신소재학회논문집
    • /
    • 제22권1호
    • /
    • pp.39-51
    • /
    • 2023
  • 매입말뚝의 지지력은 많은 연구자들에 의해 연구되었다. 하지만 하중분담률과 침하량에 대하여 설계 자료와 말뚝재하시험 지료를 비교한 연구는 미미하였다. 그래서 매입 개단 강관말뚝에 대하여 설계식 자료와 정재하시험 결과를 비교하였다. 압축재하시험에서는 선단지지하중과 주면마찰하중의 분담률이 각각 13%~40%, 60%~87%로 나타났고, 이때의 침하량은 2.2mm~4.7mm로 측정되었다. 현행 지지력 산정식에서는 선단지지력과 주면마찰력이 각각 54%~75%, 25%~46%를 분담하는 것으로 나타났고, 침하량은 19.8mm~23.6mm로 계산되었다. 현행지지력 산정식에서의 침하량은 시험에서의 침하량보다 321%~776% 만큼 크게 나타났으며, 평균적으로 445%만큼 크게 나타났다. 말뚝재하시험에서의 하중분담률을 이용하여 침하량을 산정하면, 시험 침하량보다 137%~525% 만큼 크게 나타났으며, 평균적으로 204% 만큼 크게 나타났다. 하중분담률의 적절한 평가는 말뚝 기초의 침하량 산정에 중요한 영향을 미치는 것으로 확인되었다.

남해안 해성점토의 $C_a/C_c$ ($C_a/C_c$ for Marine Clay at Southern Part of Korea)

  • 김규선;임형덕;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.373-380
    • /
    • 1999
  • Consolidation settlements of soft clay are often large and potentially damaging to the structures. Currently, large-scale construction projects for airport and harbor etc. are in progress in Korea and many of these structures will be constructed on thick and soft clay layers. For this kind of ground condition, evaluation of consolidation settlement is required at every design and construction stages, and the magnitude of secondary compression appears to be larger than expected. Generally, the magnitude of secondary compression is evaluated by laboratory and in-situ consolidation tests or by empirical $C_{a/}$ $C_{c}$, relationship. The use of empirical value $C_{a/}$ $C_{c}$ may be economical, fast and powerful tool in estimating secondary consolidation settlement. However, the databases of the $C_{a/}$ $C_{c}$, for typical soft clays in Korea are insufficient. The purpose of this study is to investigate the relationship of $C_{a/}$ $C_{c}$ on marine clay near the southern sea in Korea. A series of incremental loading consolidation tests with measurement of pore water pressure were performed. It was found that the $C_{a/}$ $C_{c}$ of undisturbed marine clay is 0.0397. This value is similar to that proposed by Mesri and Castro(1987) on inorganic clay and silt. and silt. and silt.

  • PDF

실내압밀시험에 의한 남해안지역 연약점토의 $C_a/C_c$ 평가 ($C_a/C_c$ for Soft Clay at the Southern Port of Korea by Laboratory Consolidation Tests)

  • 김규선;임형덕;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 연약지반처리위원회 학술세미나
    • /
    • pp.70-77
    • /
    • 1999
  • Consolidation settlements on soft clay are often large and potentially damaging to structures. Currently, large-scale projects are in progress in Korea. These structures will be constructed on both thick and soft clay layers, and so the accurate evaluation of magnitude of settlement is required at every step in design and construction. Especially, secondary compression play an important role in consolidation settlements on soft clay. Generally, the magnitudes of secondary compression are evaluated by laboratory and in-situ consolidation tests or by empirical $C_{a/}$ $C_{c}$ relationships. The empirical $C_{a/}$ $C_{c}$ may not be only economical, but a fast and powerful tool in estimating secondary consolidation settlement. However, databases of the $C_{a/}$ $C_{c}$ relationship for sites in Korea are currently insufficient. The purpose of this study is to investigate the relationship of $C_{a/}$ $C_{c}$, on marine clay near the southern sea in Korea. In this study a series of incremental loading consolidation tests (measuring base pore water pressure) are performed. It was found that the $C_{a/}$ $C_{c}$ on undisturbed marine clay equaled 0.0397. This value is similar to the value proposed by Mesri and Castro(1987) for inorganic clay and silt. and silt. and silt.

  • PDF

연약지반에 축조하는 강제치환 호안사석의 시공관리방법에 관한 연구

  • 김유성;박병갑
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1466-1472
    • /
    • 2010
  • In order to construct extremely large scale of sea dike like Saemanguem dike, extremely large amount of mass of rock are needed. In this case, it is general methods to estimate required amount of rock mass based on characteristics of consolidation settlement and bearing capacity of seabed, because it is impossible to estimate exact amount of rock material based on varied seabed condition.. Even in this general methods, it is very few case to manage rock mass amount by estimation of actual input rock mass but the main point is focused on the final section formation considering of designed section and reserve embankment, so excessive or underestimating result of rock mass would be occurred surely. This general methods is not resonable in the points of economic and stable. In this study, optimum construction management method of rubble mound in the 3rd section construction of Saemanguem sea dike is suggested based on comparing required rock mass estimating from consolidation settlement theory with actual input rock mass. It is found out that the optimum input quantity of rock mass is about $1,900{\sim}2,000m^3$/day.

  • PDF

A Study of Three Dimensional Numerical Analysis on Vacuum Consolidation

  • Chung, Youn ln
    • 한국지반공학회지:지반
    • /
    • 제13권3호
    • /
    • pp.5-20
    • /
    • 1997
  • 본 연구에서는 유한변형률 이론에 근거하여 3차원 압밀 지배 방정식을 유도하였다. 이 방정식은 비교적 압밀층의 두께가 두꺼운 경우, 비선형 물성치, 공극비에 따른 비선형 투수계수를 갖는 지반에 적합하다. 기존의 유한차분 수치해석 기법(FTCS)은 지배 방정식이 비선형 이며 복잡한 경우 안정된 해를 얻을 수 없기 때문에 본 연구에서는 특수 유한 차분 기법을 도입하였다. 이 수치해석 기법을 지배 방정식에 적용하면 시간에 따른 압밀량을 예측할 수 있다. 본 해석기법에 의해 구해진 값들을 윅드레인을 설치한 여러 가지 고압축성 토질에서의 실험 결과와 비교한 결과, 최종 압밀량과 시간에 따른 압말량이 잘 일치하고 있다.

  • PDF

농업용 저수지 월류시 제체와 여수토 접속부의 붕괴거동 (Behavior of Failure for Embankment and Spillway Transitional Zone of Agriculture Reservoirs due to Overtopping)

  • 노재진;이달원
    • 한국농공학회논문집
    • /
    • 제56권1호
    • /
    • pp.71-79
    • /
    • 2014
  • In this study, an experiment with large-scale model was performed according to raising the embankment in order to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The pore water pressure, earth pressure, settlement and failure pattern by a rapid drawdown and overtopping were compared and analyzed. The pore water pressure and earth pressure at spillway transitional zone by overtopping increased a rapidly with the expansion of seepage erosion, but the crest showed a smally change due to effect of the inclined core type. And it is considered an useful data that can accurately estimate the possibility of failure of the reservoirs. A settlement at overtopping decreased a rapidly due to failure of crest. The relative settlement difference due to change of the water level at the upstream and downstream slope cause increase largely crack of crest. The behavior of failure by overtopping was gradually enlarged towards reservoirs crest from the bottom of the spillway transition zone, the inclined core after the raising the embankment was influenced significantly to prevent the seepage erosion.