• Title/Summary/Keyword: Large Rotations

Search Result 74, Processing Time 0.023 seconds

Simplified Collapse Analysis of Ship Transverse Structures (선체 횡구조물의 단순화된 최종 강도 해석)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 1989
  • In this paper, a theory for the static analysis of large plastic deformations of 3-dimensional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam end, and post. failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

Numerical Study on the Formation of Tumble Motion in Engine Cylinder (엔진내부 텀블 유동 형성에 대한 수치해석적 연구)

  • Lee, Byoung-Seo;Lee, Joon-Sik;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2233-2238
    • /
    • 2003
  • It is well known that organized vortex rotations swirl and tumble greatly affect the mixing, the combustion and heat transfer processes in engine cylinder. We have developed 3 dimensional numerical simulation codes whose predictions make good agreement with the experimental data. Large eddy simulation based on Smagorinsky subgrid scale model was adopted to describe the turbulence of in-cylinder flows. The tumble motions generated by different inclination angles between valve-port and cylinder head have been calculated. The results show that the angles between direction of induced flow and cylinder walls which the flow collides with play a great role in the formation and generation of tumble motions. Therefore, it is inferred that seat angle and inclination angle are important factors of engine design. In addition, the numerical results of different engine speed -1000 rpm and 3000 rpm are very similar in the flow structure.

  • PDF

Numerical Analysis of Large Deflections of Cantilever Beams (캔틸레버 보의 과대처짐 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • A method is developed for solving the elastica of cantilever beam subjected to a tip point load and uniform load. The Bernoulli-Euler differential equation of deflected beam is used. The Runge-Kutta method and the Regula Falsi method are used to perform the integration of the differential eqution and to determine the horizontal deflection, respectively. The horizontal and vertical deflections of the free end, and the free-end rotations are calculated for a range of parameters representing variations in tip point load and uniform load. All results are presented in nondimensional forms. And some typical elastic are also presented.

  • PDF

Simplified model for analysis of soil-foundation system under cyclic pushover loading

  • Kada, Ouassila;Benamar, Ahmed;Tahakourt, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.267-275
    • /
    • 2018
  • A numerical study of soil-foundation system under monotonic and cyclic pushover loading is conducted, taking into account both material and geometric nonlinearities. A complete and refined 3D finite element (FE) model, using contact condition and allowing separation between soil and foundation, is implemented and used in order to evaluate the nonlinear relationship between applied vertical forces and induced settlements. Based on the obtained curve, a simplified model is proposed, in which the soil inelasticity is satisfactorily represented by two vertical springs with trilinear behavior law, and the foundation uplifting is insured by gap elements. Results from modeling soil-foundation system supporting a bridge pier have shown that the simplified model is able to capture irreversible settlements induced by cyclic rocking, due to soil inelasticity and vertical loading, as well as large rotations due to foundation uplifting.

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

A proposed set of popular limit-point buckling benchmark problems

  • Leahu-Aluas, Ion;Abed-Meraim, Farid
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.767-802
    • /
    • 2011
  • Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developers must reconstruct by extracting the points, a procedure which is often tedious and inaccurate. Moreover the curves are usually given without accompanying information such as the calculation time or number of iterations it took for the model to converge, even though this type of data is equally important in practice. This paper presents ten different limit-point buckling benchmark tests, and provides for each one the reference load-deflection curve, all the points necessary to recreate the curve in tabulated form, analysis data such as calculation time, number of iterations and increments, and all of the inputs used to obtain these results.

Behavior of Tapered Columns with Initial Imperfection (Initial Imperfection을 갖는 변단면 기둥의 거동 해석)

  • 이병구;모정만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.19-26
    • /
    • 1996
  • The main purpose of this paper is to investigate a more accurate behavior analysis of tapered column with initial imperfection. The nonlinear differential equations governing the deflected shapes of the tapered column with initial imperfection are derived by large deflection theory and solved numerically using the Runge-Kutta method and Regula-Falsi method. Three kinds of cross-sectional shape with simply supported end constraint are considered in numerical examples. The load versus displacement curves including the left and right end rotations are presented in figures. The effect of cross-sectional shapes on deflected shape is analyzed, and the deflected shapes of column for several initial imperfections are shown in figure.

  • PDF

On the modification of particle dispersion in isotropic turbulence by free rotation of particle (등방성 난류에서 입자의 회전에 의한 분산 특성의 변화)

  • Park, Yong-Nam;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2554-2557
    • /
    • 2008
  • Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures.

  • PDF

Nonlinear Analysis of Shell Structures by Improved Degenerated Shell Element (개선된 degenerated 쉘요소를 사용한 쉘구조의 비선형해석)

  • 최창근;유승운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.18-23
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the improved degenerated shell element, an enhanced interpolation of transverse shear strains in the natural coordinate system is used to overcome the shear locking problems; the reduced integration technique in in-plane strains is applied to avoid membrane locking behavior; selective addition the nonconforming displacement modes improve the element performances. This element is free of serious locking problems and undesirable compatible or commutable spurious kinematic deformation modes and passes the patch tests. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting nonlinear equations are solved by the Newton-Raphson solution scheme. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Electret-based microgenerators under sinusoidal excitations: an analytical modeling

  • Nguyen, Cuong C.;Ranasinghe, Damith C.;Al-Sarawi, Said F.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.335-347
    • /
    • 2018
  • The fast-growing number of mobile and wearable applications has driven several innovations in small-scale electret-based energy harvesting due to the compatibility with standard microfabrication processes and the ability to generate electrical energy from ambient vibrations. However, the current modeling methods used to design these small scale transducers or microgenerators are applicable only for constant-speed rotations and small sinusoidal translations, while in practice, large amplitude sinusoidal vibrations can happen. Therefore, in this paper, we formulate an analytical model for electret-based microgenerators under general sinusoidal excitations. The proposed model is validated using finite element modeling combined with numerical simulation approaches presented in the literature. The new model demonstrates a good agreement in estimating both the output voltage and power of the microgenerator. This new model provides useful insights into the microgenerator operating mechanism and design trade-offs, and therefore, can be utilized in the design and performance optimization of these small structures.