• 제목/요약/키워드: Large Anchor

검색결과 134건 처리시간 0.022초

Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석 (Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method)

  • 김영호;정상섬
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.895-906
    • /
    • 2014
  • 대수심 부유 구조물의 하부기초 기술 중 하나인 dynamically penetration anchor (DPA 또는 흔히 torpedo anchor로 칭함)의 거동특성을 시험결과 및 수치 해석적 접근을 통해 분석하였다. 기존의 유한요소 해석기법으로는 이러한 대수심 anchor 구조물의 거동 특성을 적절히 모사하기 어렵기 때문에 본 연구에서는 이러한 부분을 해결하기 위해 Coupled Eulerian-Lagrangian (CEL) 법을 통해 지반-구조물 사이에서 발생하는 메쉬(mesh)의 distortion 현상 및 경계조건 등의 문제점을 대변형의 관점에서 해결하고자 하였다. 실측치와의 비교를 통해, CEL 기법의 타당성을 검증하였고, 그 결과 본 연구에서 적용한 CEL 기법이 기존 유한요소 기술로는 구현이 불가능한 대수심 anchoring system의 자유낙하에 의한 전반적인 거동 및 지반의 변형특성을 적절히 예측함을 알 수 있었다. 또한 검증된 기법을 바탕으로 dynamic anchor의 거동에 영향을 주는 여러 요소들에 대한 매개변수 연구를 추가로 수행하였다.

원전 구조물용 대구경 철근의 기계적 정착을 위한 정착판 설계 (Anchor plate design for mechanical anchorage of large diameter reinforcement in nuclear containment buildings)

  • 이성호;천성철;오보환;박형철;나환선;김상구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.136-139
    • /
    • 2003
  • The re-bar work in the construction of nuclear power plants is difficult, due to the large diameter and the congestion of reinforcements. The mechanical anchorage offers a potential solution for this problem. However, the requirements or the standards for the shape of anchor plate of mechanical anchor has not been clearly established up to now. In this paper, the required performance of the mechanical anchorage for large diameter reinforcements in nuclear power plants are proposed, and the anchor plates are designed through nonlinear finite element analysis. The diameters of anchor plate are determined to be $\sqrt{5}$ times of reinforcement diameter for longitudinal reinforcements and $\sqrt{10}$ for shear reinforcements. The thickness of anchor plates is optimized as 0.3-0.35 times of reinforcement diameter for longitudinal reinforcements and 0.5~0.56 times for shear reinforcements.

  • PDF

대형 복합 상업건축의 앵커 테넌트 계획이 통행량에 미치는 영향에 관한 연구 - 롯데월드몰 앵커 테넌트 개장 전·후 통행량 변화를 중심으로 - (A Study on the Impact of Commercial Complex Anchor Tenant Plan in the Pedestrian Traffic - Focused on the Change of the Pedestrian Traffic by Reopening Anchor tenant of Lotte World Mall -)

  • 윤태준;이도훈;박현수
    • 한국실내디자인학회논문집
    • /
    • 제24권5호
    • /
    • pp.128-135
    • /
    • 2015
  • The purpose of this study is to propose a planning method for increasing visitors' usage attraction by understanding user circulation in the large scale commercial complex. Focusing on the impact of anchor tenant on the pedestrian traffic arousing visitors' usage attraction flow, this study analyzed pedestrian circulation and traffic volume of Lotte World Mall, a large scale commercial complex. In this study, the change of pedestrian traffic in the commercial complex was investigated and the circulation flow of anchor tenant visitors such as movie theater in the commercial complex was simulated by computer. By analyzing both characteristics of pedestrian circulation and traffic volume in large scale commercial complex and movie theater users' pedestrian traffic with network-based computer simulation, positive relationship between pedestrian traffic to movie theater and pedestrian traffic dispersion of the whole commercial complex users was emerged. In addition, It is necessary to plan of distributing pedestrian traffic of vertical moving line in central space appropriately for using attraction function of anchor tenant.

Prediction of Tensile Strength of a Large Single Anchor Considering the Size Effect

  • Kim, Kang-Sik;An, Gyeong-Hee;Kim, Jin-Keun;Lee, Kwang-soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.201-207
    • /
    • 2019
  • An anchorage system is essential for most reinforced concrete structures to connect building components. Therefore, the prediction of strength of the anchor is very important issue for safety of the structures themselves as well as structural components. The prediction models in existing design codes are, however, not applicable for large anchors because they are based on the small size anchors with diameters under 50 mm. In this paper, new prediction models for strength of a single anchor, especially the tensile strength of a single anchor, is developed from the experimental results with consideration of size effect. Size effect in the existing models such as ACI or CCD method is based on the linear fracture mechanics which is very conservative way to consider the size effect. Therefore, new models are developed based on the nonlinear fracture mechanics rather than the linear fracture mechanics for more reasonable prediction. New models are proposed by the regression analysis of the experimental results and it can predict the tensile strength of both small and large anchors.

시공중 계측을 통한 어스앵커 축력변화 특성사례 연구 (Case Study of Earth Anchor Axial Force Change Characteristic through Monitoring during Construction Period)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.285-292
    • /
    • 2004
  • Earth Anchor method as a supporting system is widely used in the large scale deep excavation of urban areas or slope excavation project. Considering the application frequency of that method and catastrophe of that method under unproper construction management, we can find out many problems relevant to the domestic design and construction management of earth anchor method. When we encounter the cases of rapid increments and various decrements in earth anchor axial forces, considering the characteristic of earth anchor method, it is an essential point to catch the reasons and to prepare countermeasures. This article introduces two actual monitoring examples based on the close analyses of measured data in a typical large scale deep excavation project and slope excavation project. One is a rapidly increasing case of earth anchor axial forces with the continuous advance of incremental deformation in a geological layer interface. And another is a decreasing case of earth anchor axial forces with the construction conditions. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

인장하중을 받는 중대형급 선설치 앵커볼트의 콘크리트파괴강도 평가를 위한 연구 (A Study on the Concrete Breakout Capacity Evaluation of Medium-to-Large size CIP Anchor Bolts under Tension Loading)

  • 박용명;전명희;이건준;김철환
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.493-501
    • /
    • 2011
  • 콘크리트용 앵커볼트의 설계에 $45^{\circ}$ 콘파괴 이론이 그동안 적용되어 왔으나, 2,000년 이후부터 CCD(Concrete Capacity Design) 방법이 새로운 설계법으로 도입되었다. 그러나, 본 방법은 중소형 앵커볼트에 대한 실험 결과에 근거한 관계로 앵커볼트의 직경이 50mm 이하이고 매입깊이가 635mm 이하인 경우에만 허용되고 있다. 따라서 M50 이상의 중대형 앵커볼트에 대한 합리적인 인장파괴강도식의 도출이 필요한 실정이다. 본 연구에서는 매입깊이 400~450mm의 M56 선설치 단일 앵커볼트의 콘크리트 인장파괴강도 평가를 위해 5개의 시험체에 대해 실험을 수행하였다. 그리고, 본 실험 결과와 최근의 타 실험 결과를 종합하여 매입깊이가 280~1,200mm인 중대형급 앵커볼트에 대해 현 설계기준의 인장파괴강도식의 적용성 여부를 평가하였다.

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

Magnetic resonance imaging analysis of screw in-type lateral anchor pull-out in large to massive rotator cuff repair in patients older than 60 years

  • Lee, Sang-Yoon;Noh, Young-Min
    • Clinics in Shoulder and Elbow
    • /
    • 제25권1호
    • /
    • pp.15-21
    • /
    • 2022
  • Background: This study was performed to identify the incidence of screw in-type lateral anchor pull-out in patients older than 60 years who underwent rotator cuff repair for large to massive rotator cuff tear (RCT). Methods: We reviewed 25 patients over 60 who were diagnosed with large to massive RCT and underwent arthroscopic rotator cuff repair in our hospital from March 2017 to February 2021. Preoperative tear size (anterior to posterior, medial to lateral) was measured via preoperative magnetic resonance imaging (MRI). All 25 patients underwent MRI scanning on postoperative day 1 and at 3 months after surgery. The change of anchor position was measured in axial views on MRI images postoperative day 1 and 3 months after surgery. And it was statistically compared according to bone mineral density (BMD), sex, and number of lateral anchors. Results: Two MRIs (postoperative day 1 and 3 months) in 25 patients were compared. Anchor pull-out occurred in six patients during 3 months (6.7%), and the mean pull-out length difference was 1.56 mm (range, 0.16-2.58 mm). There was no significant difference in the number of pull-out anchors, degree of pull-out difference by comparing BMD (A, BMD≤-2.5; B, BMD>-2.5), sex, or number of anchors used in each surgery (C, two anchors; D, three anchors) (p>0.05). Conclusions: Pull-out of screw in-type anchors was rarely observed and the mean pull-out length difference was negligibly small in our study. The screw in-type lateral anchor seems to be a decent option without concern of anchor pull-out even in elderly patients.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

지반개량에 의한 Anchor 정착부 개선효과 사례연구 (A Case Study on the Effect of Soil Improvement on Anchor Bond Zone)

  • 김태섭;송상호;조규완;이재동
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF