• Title/Summary/Keyword: Large Anchor

Search Result 133, Processing Time 0.026 seconds

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method (Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석)

  • Kim, Youngho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.895-906
    • /
    • 2014
  • A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

Anchor plate design for mechanical anchorage of large diameter reinforcement in nuclear containment buildings (원전 구조물용 대구경 철근의 기계적 정착을 위한 정착판 설계)

  • 이성호;천성철;오보환;박형철;나환선;김상구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.136-139
    • /
    • 2003
  • The re-bar work in the construction of nuclear power plants is difficult, due to the large diameter and the congestion of reinforcements. The mechanical anchorage offers a potential solution for this problem. However, the requirements or the standards for the shape of anchor plate of mechanical anchor has not been clearly established up to now. In this paper, the required performance of the mechanical anchorage for large diameter reinforcements in nuclear power plants are proposed, and the anchor plates are designed through nonlinear finite element analysis. The diameters of anchor plate are determined to be $\sqrt{5}$ times of reinforcement diameter for longitudinal reinforcements and $\sqrt{10}$ for shear reinforcements. The thickness of anchor plates is optimized as 0.3-0.35 times of reinforcement diameter for longitudinal reinforcements and 0.5~0.56 times for shear reinforcements.

  • PDF

A Study on the Impact of Commercial Complex Anchor Tenant Plan in the Pedestrian Traffic - Focused on the Change of the Pedestrian Traffic by Reopening Anchor tenant of Lotte World Mall - (대형 복합 상업건축의 앵커 테넌트 계획이 통행량에 미치는 영향에 관한 연구 - 롯데월드몰 앵커 테넌트 개장 전·후 통행량 변화를 중심으로 -)

  • Yoon, Tae-Jun;Lee, Do-Hun;Park, Hyeon-Soo
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.128-135
    • /
    • 2015
  • The purpose of this study is to propose a planning method for increasing visitors' usage attraction by understanding user circulation in the large scale commercial complex. Focusing on the impact of anchor tenant on the pedestrian traffic arousing visitors' usage attraction flow, this study analyzed pedestrian circulation and traffic volume of Lotte World Mall, a large scale commercial complex. In this study, the change of pedestrian traffic in the commercial complex was investigated and the circulation flow of anchor tenant visitors such as movie theater in the commercial complex was simulated by computer. By analyzing both characteristics of pedestrian circulation and traffic volume in large scale commercial complex and movie theater users' pedestrian traffic with network-based computer simulation, positive relationship between pedestrian traffic to movie theater and pedestrian traffic dispersion of the whole commercial complex users was emerged. In addition, It is necessary to plan of distributing pedestrian traffic of vertical moving line in central space appropriately for using attraction function of anchor tenant.

Prediction of Tensile Strength of a Large Single Anchor Considering the Size Effect

  • Kim, Kang-Sik;An, Gyeong-Hee;Kim, Jin-Keun;Lee, Kwang-soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • An anchorage system is essential for most reinforced concrete structures to connect building components. Therefore, the prediction of strength of the anchor is very important issue for safety of the structures themselves as well as structural components. The prediction models in existing design codes are, however, not applicable for large anchors because they are based on the small size anchors with diameters under 50 mm. In this paper, new prediction models for strength of a single anchor, especially the tensile strength of a single anchor, is developed from the experimental results with consideration of size effect. Size effect in the existing models such as ACI or CCD method is based on the linear fracture mechanics which is very conservative way to consider the size effect. Therefore, new models are developed based on the nonlinear fracture mechanics rather than the linear fracture mechanics for more reasonable prediction. New models are proposed by the regression analysis of the experimental results and it can predict the tensile strength of both small and large anchors.

Case Study of Earth Anchor Axial Force Change Characteristic through Monitoring during Construction Period (시공중 계측을 통한 어스앵커 축력변화 특성사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.285-292
    • /
    • 2004
  • Earth Anchor method as a supporting system is widely used in the large scale deep excavation of urban areas or slope excavation project. Considering the application frequency of that method and catastrophe of that method under unproper construction management, we can find out many problems relevant to the domestic design and construction management of earth anchor method. When we encounter the cases of rapid increments and various decrements in earth anchor axial forces, considering the characteristic of earth anchor method, it is an essential point to catch the reasons and to prepare countermeasures. This article introduces two actual monitoring examples based on the close analyses of measured data in a typical large scale deep excavation project and slope excavation project. One is a rapidly increasing case of earth anchor axial forces with the continuous advance of incremental deformation in a geological layer interface. And another is a decreasing case of earth anchor axial forces with the construction conditions. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

A Study on the Concrete Breakout Capacity Evaluation of Medium-to-Large size CIP Anchor Bolts under Tension Loading (인장하중을 받는 중대형급 선설치 앵커볼트의 콘크리트파괴강도 평가를 위한 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Lee, Kun-Jun;Kim, Cheol-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.493-501
    • /
    • 2011
  • The $45^{\circ}$cone failure theory has been used for concrete anchor bolt design, but the CCD (concrete capacity design) method was adopted as a new design method in 2000. The method was allowed to be used, however, only for anchors with a diameter of less than 50 mm and an embedment depth of less than 635 mm because it is based on the experiment results from medium-sized to small anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-sized to large anchor bolts. In this study, tension tests on an M56 cast-in-place single anchor bolt with an effective embedment depth of 400-450 mm were carried out for the five test specimens. Based on the test results together with the other recent test results, the applicability of the concrete breakout capacity equation in the current design code to the large to medium-sized anchor bolts with an embedment depth of 280-1,200 mm was estimated.

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

Magnetic resonance imaging analysis of screw in-type lateral anchor pull-out in large to massive rotator cuff repair in patients older than 60 years

  • Lee, Sang-Yoon;Noh, Young-Min
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Background: This study was performed to identify the incidence of screw in-type lateral anchor pull-out in patients older than 60 years who underwent rotator cuff repair for large to massive rotator cuff tear (RCT). Methods: We reviewed 25 patients over 60 who were diagnosed with large to massive RCT and underwent arthroscopic rotator cuff repair in our hospital from March 2017 to February 2021. Preoperative tear size (anterior to posterior, medial to lateral) was measured via preoperative magnetic resonance imaging (MRI). All 25 patients underwent MRI scanning on postoperative day 1 and at 3 months after surgery. The change of anchor position was measured in axial views on MRI images postoperative day 1 and 3 months after surgery. And it was statistically compared according to bone mineral density (BMD), sex, and number of lateral anchors. Results: Two MRIs (postoperative day 1 and 3 months) in 25 patients were compared. Anchor pull-out occurred in six patients during 3 months (6.7%), and the mean pull-out length difference was 1.56 mm (range, 0.16-2.58 mm). There was no significant difference in the number of pull-out anchors, degree of pull-out difference by comparing BMD (A, BMD≤-2.5; B, BMD>-2.5), sex, or number of anchors used in each surgery (C, two anchors; D, three anchors) (p>0.05). Conclusions: Pull-out of screw in-type anchors was rarely observed and the mean pull-out length difference was negligibly small in our study. The screw in-type lateral anchor seems to be a decent option without concern of anchor pull-out even in elderly patients.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF