• Title/Summary/Keyword: Laplace transform order

Search Result 50, Processing Time 0.024 seconds

Note on Stochastic Orders through Length Biased Distributions

  • Choi, Jeen-Kap;Lee, Jin-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.243-250
    • /
    • 1999
  • We consider $Y=X{\lambda}Z,\;{\lambda}>0$, where X and Z are independent random variables, and Y is the length biased distribution or the equilibrium distribution of X. The purpose of this paper is to consider the distribution of X or Y when the distribution of Z is given and the distribution of Z when the distribution of X or Y is given, In particular, we obtain that the necessary and sufficient conditions for X to be $X^{2}({\upsilon})\;is\;Z{\sim}X^{2}(2)\;and\;for\;Z\;to\;be\;X^{2}(1)\;is\;X{\sim}IG({\mu},\;{\mu}^{2}/{\lambda})$, where $IG({\mu},\;{\mu}^{2}/{\lambda})$ is two-parameter inverse Gaussian distribution. Also we show that X is smaller than Y in the reverse Laplace transform ratio order if and only if $X_{e}$ is smaller than $Y_{e}$ in the Laplace transform ratio order. Finally, we can get the results that if X is smaller than Y in the Laplace transform ratio order, then $Y_{L}$ is smaller than $X_{L}$ in the Laplace transform order, and that if X is smaller than Y in the reverse Laplace transform ratio order, then $_{\mu}X_{L}$ is smaller than $_{\nu}Y_{L}$ in the Laplace transform order.

  • PDF

ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF VARIABLE COEFFICIENTS BY USING HOMOTOPY PERTURBATION TRANSFORM METHOD

  • Gupta, V.G.;Gupta, Sumit
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.165-177
    • /
    • 2013
  • In this paper, we apply Homotopy perturbation transform method (HPTM) for solving singular fourth order parabolic partial differential equations with variable coefficients. This method is the combination of the Laplace transform method and Homotopy perturbation method. The nonlinear terms can be easily handled by the use of He's polynomials. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain Decomposition method (ADM). The proposed scheme finds the solutions without any discretization or restrictive assumptions and avoids the round-off errors. The comparison shows a precise agreement between the results and introduces this method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

THE DOUBLE FUZZY ELZAKI TRANSFORM FOR SOLVING FUZZY PARTIAL DIFFERENTIAL EQUATIONS

  • Kshirsagar, Kishor A.;Nikam, Vasant R.;Gaikwad, Shrikisan B.;Tarate, Shivaji A.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.177-196
    • /
    • 2022
  • The Elzaki Transform method is fuzzified to fuzzy Elzaki Transform by Rehab Ali Khudair. In this article, we propose a Double fuzzy Elzaki transform (DFET) method to solving fuzzy partial differential equations (FPDEs) and we prove some properties and theorems of DFET, fundamental results of DFET for fuzzy partial derivatives of the nth order, construct the Procedure to find the solution of FPDEs by DFET, provide duality relation of Double Fuzzy Laplace Transform (DFLT) and Double Fuzzy Sumudu Transform(DFST) with proposed Transform. Also we solve the Fuzzy Poisson's equation and fuzzy Telegraph equation to show the DFET method is a powerful mathematical tool for solving FPDEs analytically.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

Position Controller Implementation Using the Fractional Order Derivative (유리차수 미분을 이용한 위치제어기 구현)

  • Kang, Jung-Yoog;Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.185-190
    • /
    • 2019
  • This study aims to apply the mathematical method of fractional order derivatives to the controller that controls the system response. In general, the Laplace transform of the PID controller has an exponent of the integer order of s. The derivative of the fractional order has a fractional exponent of s when it is transformed by Laplace transform. Therefore, this controller proposes a design method with the result of discrete time conversion. Because controllers with fractional exponents of s are not easy to design. This controller is applied to a standard secondary system and its performance is examined. Then, it applies to solenoid valve which is widely used in industrial field. A Luenberger's observer was designed to estimate the disturbance state and the observed state was applied to the fractional order controller. As a result, uniform and precise control performance was obtained. It was confirmed that the position error of the steady state is within 0.1 [%] and the rising time is within about 0.03 [s].

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III

  • Lata, Parveen;Zakhmi, Himanshi
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.295-305
    • /
    • 2019
  • The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.

Effect of two-temperature in an orthotropic thermoelastic media with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.241-262
    • /
    • 2021
  • In this article, we studied the effect of two-temperature in a two-dimensional orthotropic thermoelastic media with fractional order heat transfer in generalized thermoelasticity with three-phase-lags due to thermomechanical sources. The boundary of the surface is subjected to linearly distributed and concentrated loads (mechanical and thermal source). The solution of the problem is obtained with the help of Laplace and Fourier transform techniques. The expressions for displacement components, stress components and conductive temperature are derived in transformed domain. Numerical inversion technique is used to obtain the results in physical domain. The effect of two-temperature on all the physical quantities has been depicted with the help graphs. Some special cases are also discussed in the present investigation.

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.