Browse > Article
http://dx.doi.org/10.12989/gae.2019.19.4.295

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III  

Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala)
Zakhmi, Himanshi (Department of Basic and Applied Sciences, Punjabi University Patiala)
Publication Information
Geomechanics and Engineering / v.19, no.4, 2019 , pp. 295-305 More about this Journal
Abstract
The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.
Keywords
orthotropic medium; fractional calculus; Laplace transform; Fourier transform; concentrated load; linearly and uniformly distributed loads;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Zenkour, A.M. (2018), "A generalized thermoelastic dual-phaselagging response of thick beams subjected to harmonically varying heat and pressure", J. Theor. Appl. Mech., 56(1), 15-30. http://doi.org 10.15632/jtam-pl.56.1.15.   DOI
2 Abbas, I.A. and Abdalla, A.N. (2008), "Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity", Arch. Appl. Mech., 78(4), 283-293. https://doi.org/10.1007/s00419-007-0156-7.   DOI
3 Abbas, I.A. and Youssef, H.M. (2015), "Two dimensional fractional order generalized thermoelastic porous material", J. Solid. Struct., 12(7), 1415-143. http://dx.doi.org/10.1590/1679-78251584.   DOI
4 Abouelregal, A.E. (2018), "The effect of temperature-dependent physical properties and fractional thermoelasticity on non-local nano beams", J. Math. Theor. Phys., 1(2), 49-58.
5 Adolfsson, K. and Enelund, M. and Olsson P. (2005), "On the fractional order model of viscoelasticity", Mech. Time Dependent Mater., 9(1), 15-34. https://doi.org/10.1007/s11043-005-3442-1.   DOI
6 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
7 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
8 Bachher, M. and Sarkar, N. (2016), "Fractional order magnetothermoelasticity in a rotating media with one relaxation time", J. Math. Model. Eng., 2(1), 56-67.
9 Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Therm. Stresses, 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971.   DOI
10 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.   DOI
11 Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.   DOI
12 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.   DOI
13 Abbas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forsch Ingenieurwes, 71(3-4), 215-222. https://doi.org/10.1007/s10010-007-0060-x.   DOI
14 Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. https://doi.org/10.1134/S102995991802008X.   DOI
15 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
16 Caputo, M. (1967), "Linear model of dissipation whose Q is almost frequency independent-II", Geophys. J. Royal Astronom. Soc. Vanner, 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.   DOI
17 Catteno, C. (1958), "A form of heat conduction equation which eliminates the paradox of instantaneous propagation", Comptes Rendus, 247, 431-433.
18 Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. http://doi.org/10.1115/1.3098984.   DOI
19 Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828.   DOI
20 Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Physica B Condensed Matter, 405(19), 4188-4194. https://doi.org/10.1016/j.physb.2010.07.009.   DOI
21 Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid nano-fluids", Heat Transfer Res., 49(18), 1837-1848. http://doi.org/10.1615/HeatTransRes.2018025569.   DOI
22 Honig, G. and Hirdes, U. (1984), "A method for numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10(1), 113-132. http://doi.org/10.1016/0377-0427(84)90075-x.   DOI
23 Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.   DOI
24 Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperature and rotation", J. Solid Mech. 8(4), 840-858.
25 Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
26 Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", J. Adv. Math. Appl., 3(1), 47-54. https://doi.org/10.1166/jama.2014.1050.   DOI
27 Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current and two temperature transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. http://doi.org/10.1080/15376494.2016.1196769.   DOI
28 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources", Coupled Syst. Mech., 8(3), 219-245. http://doi.org/10.12989/csm.2019.8.3.219.   DOI
29 Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12989/sem.2019.70.2.245.   DOI
30 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.   DOI
31 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. http://doi.org/10.12989/sem.2019.69.6.607.   DOI
32 Marin, M. and Othman, M.I.A. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3873. http://doi.org/10.1016/j.rinp.2017.10.012.   DOI
33 Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Ciencias Mathematics (Havana), 16(2), 101-109.
34 Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. http://doi.org/10.1063/1.532809.   DOI
35 Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. http://doi.org/10.1016/j.compositesb.2017.05.063.   DOI
36 Oldham, K.B. and Spainer, J. (1974), The Fractional Calculus, Academic Press.
37 Marin, M., Othman, M.I.A., Vlase, S. and Codarcea-Munteanu, L. (2019), "Thermoelasticity of initially stressed bodies with voids:A domain of influence, Symmetry, 11(573), 1-12. http://doi.org/10.3390/sym11040573.
38 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
39 Muhammad, R., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual phase lag magneto-thermoelasticity", Open Phys., 17(1), 8-15. http://doi.org/10.1515/phys-2019-0002   DOI
40 Othman, M.I.A. and Jahangir, A. (2015), "Plane waves on rotating microstetch elastic solid with temperature dependent elastic properties", Int. J. Appl. Math. Inform. Sci., 9(6), 2963-2972. http://dx.doi.org/10.12785/amis/090624.
41 Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986), Numerical Recipes in Fortran, Cambridge University Press.
42 Vernotte P. (1958), "Les paradox de la theorie continue de l'equation de la chaleur", Comptes Rendus, 246, 3145-3155.
43 Raslan, W. (2015), "Application of fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution", J. Therm. Stresses, 38(7), 733-743. http://doi.org/10.1080/01495739.2015.1040307.   DOI
44 Roychoudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stresses, 30(3), 231-238. http://doi.org/10.1080/01495730601130919.   DOI
45 Roychoudhuri, S.K. (2007), "One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects", J. Mech. Mater. Struct., 2(3), 489-503. http://dx.doi.org/10.2140/jomms.2007.2.489.   DOI
46 Tian, X., Shen, Y., Chen, C. and He, T. (2006), "A direct finite element method study of generalized thermoelastic problems", Int. J. Solids Struct., 43, 2050-2063. http://doi.org/10.1016/j.ijsolstr.2005.06.071.   DOI
47 Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. http://doi.org/10.1115/1.2822329.   DOI
48 Yadav, R., Kumar, K. and Deswal, S. (2015), "Two temperature thermal viscoelasticity with fractional order strain subjected to moving heat source", J. Math., 1-13. http://dx.doi.org/10.1155/2015/487513.
49 Youssef, H.M. and Abbas, I.A. (2007), "Thermal shock problem of generalized thermo-elasticity for an infinitely long annular cylinder with variable thermal conductivity", Comput. Meth. Sci. Technol., 13(2), 95-100. http://doi.org/10.12921/csmt.2007.13.02.95-100.   DOI
50 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI