• Title/Summary/Keyword: Laplace and Fourier Transform

Search Result 64, Processing Time 0.019 seconds

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures

  • Kaur, Harpreet;Lata, Parveen
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.309-319
    • /
    • 2020
  • The objective is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with mass diffusion and with two temperatures due to a thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacements, stress components, conductive temperature, mass concentration and couple stress are obtained in the transformed domain. Numerical inversion technique has been used to obtain the solutions in the physical domain. Isothermal boundary and insulated boundaryconditions are used to investigate the problem. Some special cases of interest are also deduced.

Analysis of photothermal response in a two-dimensional semiconducting material thermally excited by pulse heat flux

  • Saeed, Tareq;Abbas, Ibrahim
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • A mathematical model of Lord-Shulman photo-thermal theorem induced by pulse heat flux is presented to study the propagations waves for plasma, thermal and elastic in two-dimensional semiconductor materials. The medium is assumed initially quiescent. By using Laplace-Fourier transforms with the eigenvalue method, the variables are obtained analytically. A semiconductor medium such as silicon is investigated. The displacements, stresses, the carrier density and temperature distributions are calculated numerically and clarified graphically. The outcomes show that thermal relaxation time has varying degrees of effects on the studying fields.

Dynamic Analysis of Engine Response to Throttle Tip-in/Tip-out (Tip-in/Tip-out 시의 엔진의 동적 거동 해석)

  • Ko, Kang-Ho;Kook, Hyung-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.540-545
    • /
    • 2001
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/tip out are analyzed. Because the hydraulic mounts have non-linearity which the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integrals and relationships between unit impulse response functions and frequency response functions are therefore used to simulate the transient behavior of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse Fourier transform of frequency response function achieved by Laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.

  • PDF

REMARKS ON THE EXISTENCE OF AN INERTIAL MANIFOLD

  • Kwak, Minkyu;Sun, Xiuxiu
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1261-1277
    • /
    • 2021
  • An inertial manifold is often constructed as a graph of a function from low Fourier modes to high ones and one used to consider backward bounded (in time) solutions for that purpose. We here show that the proof of the uniqueness of such solutions is crucial in the existence theory of inertial manifolds. Avoiding contraction principle, we mainly apply the Arzela-Ascoli theorem and Laplace transform to prove their existence and uniqueness respectively. A non-self adjoint example is included, which is related to a differential system arising after Kwak transform for Navier-Stokes equations.

THE INITIAL-BOUNDARY-VALUE PROBLEM OF A GENERALIZED BOUSSINESQ EQUATION ON THE HALF LINE

  • Xue, Ruying
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.79-95
    • /
    • 2008
  • The local existence of solutions for the initial-boundary value problem of a generalized Boussinesq equation on the half line is considered. The approach consists of replacing he Fourier transform in the initial value problem by the Laplace transform and making use of modern methods for the study of nonlinear dispersive wave equation

Integral Transforms in Electromagnetic Formulation

  • Eom, Hyo Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.273-277
    • /
    • 2014
  • In this research, integral transform technique for electromagnetic scattering formulation is reviewed. Electromagnetic boundary-value problems are presented to demonstrate how the integral transforms are utilized in electromagnetic propagation, antennas, and electromagnetic interference/compatibility. Various canonical structures of slotted conductors are used for illustration; moreover, Fourier transform, Hankel transform, Mellin transform, Kontorovich-Lebedev transform, and Weber transform are presented. Starting from each integral transform definition, the general procedures for solving Helmholtz's equation or Laplace's equation for the potentials in the unbounded region are reviewed. The boundary conditions of field continuity are incorporated into particular formulations. Salient features of each integral transform technique are discussed.

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.