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THE INITIAL-BOUNDARY-VALUE PROBLEM OF A
GENERALIZED BOUSSINESQ EQUATION
ON THE HALF LINE

RuyinGg XUE

ABSTRACT. The local existence of solutions for the initial-boundary value
problem of a generalized Boussinesq equation on the half line is consid-
ered. The approach consists of replacing the Fourier transform in the
initial value problem by the Laplace transform and making use of mod-
ern methods for the study of nonlinear dispersive wave equation

1. Introduction

We consider the initial-boundary value problem for the generalized Boussi-
nesq equation on the half line

Ut — Uga + Ugzzr + (|u|nu)xz = Ovt > 0,33 > Oa
(11) U(O,t) = hl(t)auw(ovt) = h?(t)a
u(z,0) = f(z),u:(x,0) = O, h(z),

where 0 < & < 4, the velocity is an z-derivative function. Equations of type
(1.1) are a class of essential model equations appearing in physics and fluid
mechanics. It is derived by Boussinesq to describe two-dimensional irrotational
flows of an inviscid liquid in a uniform rectangular channel. And it also arises
in a large range of physical phenomena including the propagation of ion-sound
waves in a plasma and nonlinear lattice wave.

The study of the initial-value problem for the Boussinesg-type equation has
recently attracted considerable attention of many mathematicians and physi-
cists { See [1], [2] and references therein). For instance, Bona and Sachs in
[2] proved that the initial-value problem of the Boussinesq equation is lo-
cally well posed for smooth data by using Kato’s abstract theory of quasi-
linear evolution equation. They proved that for any f(z) € H*t?(R) and
h(z) € H*t(R) with some s > 1/2, there exists a time T > 0 such that
the initial-value problem of the Boussinesq equation has a unique solution
u € C([0,T]); H¥2(R)) n CL([0,T]; H*(R)) N C?([0,T); H*~2(R)). In the case
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1 < K < 4, Linares in [8] established the local and global existence the-
ory for the initial-value problem of the Boussinesq equation when (f,0.h) €
L2(R) x H-'(R) or (f,8,h) € H'(R) x L*(R), by the so-called L? — L¢ smooth-
ing effect of the Strichartz type. In [12], Xue considered the case x > 4 and
proved some local and global existence results when the initial data belong to
some suitable Besov spaces.

The practical, quantitative use of the Boussinesq equation and its rela-
tives does not always involve the pure initial-value problem. Instead, initial-
boundary value problems either on a finite domain or on the half line often come
to the fore. The main difficulty in the study of initial-boundary-value problems
is the evaluation of the contribution of the boundary data. In the literature,
very few results are available. By using the finite element Galerkin method,
Pani and Saranga in [10] got some local existence and uniqueness of the solu-
tions of the initial-boundary-value problems of the Boussinesq equation on a
finite domain with homogenous boundary conditions. In [11] Varlamov consid-
ered the damped Boussinesq equation with the initial-boundary-value problem
in a unit disk, and the global-in-time solvability was obtained by using the
Fourier-Bessel series. As far as we know the existence of the initial-boundary-
value problem of a generalized Boussinesq equation on the half line was not
considered previously. In this paper we consider the local existence of the
initial-boundary-value problem for the Boussinesq-type equations on the half
line. The approach consists of replacing the Fourier transform in the initial-
value problem by the Laplace transform and making use of modern methods
for the study of nonlinear dispersive wave equation. The main result obtained
in this paper is

Theorem 1.1. Assume that f(z)€ L*(R*), h(z)€ Hy *(RT), hy(t)€ HO% (RT)
and ha(t)€ Ho *" *(RT). Then there exists a positive constant T > 0, which

depends only on

2 h -1 h
||f||L (R) + “ ”H (Rt) + ” 1||HO%(R+

h
) + || 2”7'[(;%’_%(]1?"'),

such that the initial-boundary-value problem (1.1) possess a unique local solution
u(t,z) satisfying

u € C([0, T}; L3 (R)) N Ly ([0, T; L (R™Y)).

In the sequel, we denote by R* the open right half-line {z : z > 0} and
denote by C some large constant which may vary from line to line. The notation
A ~ B means that there exist two harmless positive constants C; and C5 such
that C1A < B < CsA. For a Banach space X, we denote by || - ||x the norm
in X. We also denote by x(z) the function satisfying x(z) = 1 for z € Rt and
x(z) =0 for z ¢ RY.
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The rest of this paper is organized as follows. In section 2 we prove some
smoothing effects for the linear Boussinesq equation with inhomogeneous initial-
boundary data. The existence and the uniqueness of the solution is given in
Section 3.

2. Linear estimates

In this section we give some smoothing effects for the linear equation asso-
ciated to (1.1). These estimates will be the main ingredient in the proof of
local existence of the initial-boundary-value problem (1.1). Consideration is
first directed to the linear initial-boundary-value problem

Ut — Ugze + Uzzre = O,t > 0,:!: > 0,
(2.1) w(0,1) = hi(t), u(0,t) = ha(t),
u(z,0) = 0,u(z,0) = 0.
Denote by
Co(RY)={ue C(R) : u=0for z < 0}.

Lemma 2.1. Assume that hy, hy € Co(R"). Then the solution, Wy(t)(hy, ha),

of the linear problem (2.1) has an explicit formula

u(w’t) = Wb(t)(h’lihZ) = Ul(xvt) + Uz(.’L‘,t) + Ul(wat) + Uz(l‘,t),

where

1 [t 2u% -1 /T
Ui(z,t) = — K gV H 1t g—px

P2 s (PN i
<A+m(nﬁﬂ—1M@>—hxo)f”Vﬁ:ﬁ%>dm

+ 2
Us(z,t) = L ” 2 1 Vit in/pi -1z

2 )i V=1 u+ivp? - 1)
-+oo
</0 (hi(8) + h2(8)) e“i“v“2“15d5> dp.

Proof. As a potential global solution of (2.1} is defined on a half-line R in
each of the two independent variables x and t, it is not unnatural to think
of replacing the use of the Fourier transform with the Laplace transform. By
taking the Laplace transform with respect to ¢ of both sides of the equation
in (2.1), the initial-boundary-value problem is converted to a one-parameter
family of four-order, boundary-value problems

25 N2ii(z, A) — (2, New + (2, Nrass = 0,Re(A) > 0,z > 0,
('){a@M=h0wmm»=mmmuw»=mmwmw=m

where A is the dual variable, 4(z, A), k1 ()\) and EQ(A) are the Laplace transform
of u(z,t), h1(t) and he(t) with respect to t, respectively. Let v14, v24, 734 and
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44 be the four roots of the characteristic equation

74— A2+ A2 =0, €4 ={): Re()) > 1/2},
ordered so that Re(y14) < 0, Re(y24) < 0, Re(y34) > 0 and Re(y44) > 0.
It is obvious that 14, 724, 34 and 444 are analytic for Re()) > 1/2 and
continuous for Re(A) > 1/2 except at A = 1/2. As both 4(z,\) and 4. (z, A)
tend to zero as £ — +oo, it is concluded that for any A with Re(A) > 1/2

iz, A) = S — [('72Aill()‘) - ilz()\))ewmz - (71Ai11()\) - hz()\))e'mw] .
YeA — NaA
Thus, for any fixed p with Re(p) > 1/2, one has the representation for z > 0
and t > 0,
u(z,t) = 1 e eMi(z, \)dA
’ 27 p—ico ’

1 p+ico e)‘t

2.3 = — D fz A —B A)erta®
(2.3) =3 By [(2aha(3) = (X))

—(yiah1(N) — fzg(/\))e”“’] dA.

A little analysis shows that

14() = 1240, 134(0) = 1a4(X) for Re(A) > 1/2, A # 1/2,
and
1A = 124 = O(A = 1/2"/%) as A = 1/2, Re()) 2 1/2.
As this singularity is integrable, we may let p — 1/2in (2.3), thereby obtaining
forz > 0andt >0,
1 $+ico Mt

- - A _} TAT
R Wi very (2B () = o (W)e

~(nahi () = ha(W)e4*] d.
Let v1B, 728, 138 and 45 be the four roots of the characteristic equation
Y =2+ X2 =0,A€ B={\: 0<Re(\) <1/2},

ordered so that Re(v18) < 0, Re(v2p) < 0, Re(vsg) > 0 and Re(vag) > 0. It
is obvious that v15, 2B, v3B and y4p are analytic for A € B and continuous
for 0 < Re(A) < 1/2 except at A = 1/2 and A = 0. By the uniqueness and the
continuity of the root of the characteristic equation v* —~2+ A2 = 0 on the half
lines Ty = {\: Re(A) = 1/2,Im(A) > 0} and I'_ = {A: Re(A) = 1/2,Im(A) <
0}, we assume, without loss of generality,

B = V14; V2B = Y24,A € ['1.
Then we have
MB = V14,%2B = Y24, A €T,
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or
V1B = V24,728 = V14, A €.
By symmetry we deduce from (2.4) that
1 1+ico eMt . R
25 ) = — ____.__._._[ A1) — Ao (A))e18®
(2.5)  u(z,t) ) P —— (vaph1(X\) — ha(N))e

~(mehi(}) = iiz(/\))e””] dX.

A little analysis shows that

v18(0) = mB(A), 728(A) = 12p(}) for 0 < Re(\) < 1/2
Ima(A) =128V = O(1A = 1/2'/?), as A = 1/2, 0 <Re(}) <1/2,
[v1B(A) — 728(A)] = O(1), as A = 0, 0 < Re()) < 1/2,
and for A € B, |A\] = 400,
B ~ A2, yes(V)] ~ AM2,
Re(mie(\) ~ =A%, Re(rap(N) ~ —|A]2.

Hence, we are allowed to change the contour on the basis of Cauchy’s Theorem
and thereby determine from (2.5) that
1 0+ioco 6/\t . R
2.6 u(z,t) = — —_— hi(A) — ha(A))e™B®
@6 uwt) = 5o e [ (aah () - oY)

—(mBhi(X) - 32()\))6"’2”} dX.

Denote by
U ) 1 0+4ico eMt ; o ; S,
.'I?,t = — - _ . BT ,
i 2mi /O-l—iO V2B — ViB (Y28 2
1 0+ico et . X . \
U.’L',t:—._.: - B () — Ba(A))e™2B2 0,
o) 27w Jorio 2B — B (nshi(}) 2(A))
Note that

_ - 1
7B(A) =7118(A),12B(A) = 7128(A) for 0 < Re(A) < 1/2 withA # 0,1 # 2
and

FLN) = (V) () = ha(R) for 0< Re(A) < 1/2 with A £ 0, A # -215

By direct computation, it follows that for z > 0 and ¢t > 0
1 [O+i0 et . . _
— _ hi(A) — ha(A))e"24d\ = t
el A (v2Bh1(A) — h2(A))e A = Ui (z,1)
and
L0 ) - ha(0)eEedr
- — €8T\ = Us(z, t).
57 Jose 3B =18 (mBhi(A) — h2(})) 2(z, 1)
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Then we get for z > 0 and ¢ > 0
(27) U(.Tlf,t) = Wb(t)(hl,hg) = Ul(:L“,t) + UQ(CU,t) + Ul(ﬂi,t) + Ug(lt,t).
For A € {A: Re(\) =0, Im()) > 0}, it is convenient to make the change of

variables
A=ipu/p?2—1 for p>1

in the characteristic equation ¥* — 42 + A2 = 0. In terms of y, the four roots
are

1B = —p, 128 = iv/p? — 1, y3p = p and yp = =iV — 1,
and the integral U;(z,t) and Us(z,t) may be rewritten as

1 [tee 22 —1 N
Ul(x’t) = ljl elu uz—lte—[tﬂ)

) @i/ )
+oo
( /0 (iv/iZ =Thi() — ha(©)) e—iﬂvfﬂ*lfds) dp,

+ 2
UQ(.’IZ,t) = ——i = 27 — 1 eiu\/p?—ltei\/y?—lz
2 Y T S [ (TR VT )

(f e (©) + ha(6)) e-"“mﬁds) du.

We complete the proof. O
For a, 8 € R we define
HP(R) = {f : [€1(1 + [EDP 2 F(§) € L*(R)}
with
1fllseswy = [ 1617 + 16D7 2 £(©)
where f is the Fourier transform in z of the function f(z). Let

HEP(RY) = {f € HYP(R) : suppf C [0, 00)}

L2(R)’

with
1l ey = 1 ot ),
and let
HOP(RT) = {f = Flg+, F € H**(R)}

with

||f||Ha»B(R+) = inf{“F”H“v/’(R)a f = Flg+}.
Denote by

HJ(RY) = Hy(RY), H®(R*) = H*P(RT)
and

HE (RY) = Hg*(RY), H*(RY) = HOO(RY).
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For any a and # with & < 0 and a < 8, we have
(2.8) | fllagas @y ~ 1 fll oy + 1112 R)

because of
€[5 (L + €77 ~ Je]* + (1 + [¢)*.
Lemma 2.2. Assume «, and f satisfy one of the following conditions:
e a€(—1,0] and B € (-1,3) witha < B, and f € HP(R);
eac(-100andBe(},2), feHP(R) and F(0) =0.

Then x(z)f(z) € HYP (RY), and
(@)@l 5@y < Ml
Proof. For0 < 8 < % and fi(z) € H3(R), orfor 1 < 8 < £ and fi(z) € H}(R)
with £(0) = 0, that x(z)f1(z) € HZ(R") and
(29) @@ lgp ey < Ol @ o

comes from Lemma 2.3 and Proposition 2.4 in [4].

Note that Hg (R*) is the dual space of H=#(R*) for 8 < 0 ( see Proposition
2.1 in [4]). For any g(z) € H~#(R"), we can choose F € H #(R) with g =
F|p+ and ||gl| -2 ®+) ~ ||F || zr-2 (). Thus, for -1 < 8 <0 and fi(z) € H®(R)
we have the following chain of inequalities

[(x(z) f1(z), g(x))| < |{fi(z), x{x)F(z))|
< NAEN s ®)lIX@F (@) 4= 2) < CllA@ B2 @) lIX @) F (@)l g8 714
< Clfi@)as @l F @) -y < Cllf1 (@) as m)llg(@)] -2 (R4 5

the last two inequalities hold because of Lemma 2.3 in [4]. Then, x{(z)fi(z) €
HJ(R*) and

(2.10) Ix(@) f1 (@)l g w4y < CllA 15 R)-
For -1 <a<Oand f, € H*(R), we have
| foll e my = [I(1 + |§|)af2(€)HLg(R) < |§|af2(§)||Lg(R) = || fall gro my»

where f5(€) is the Fourier transform with respective to z of the function fo(z).
The similar argument to that used in (2.10) yields x(z)f2(z) € H§(R") and

Ix(@) f2(2)l e +) < Cllfallma®) < Cllfollgre(m),
which, together with Proposition 2.8 in [4], implies x(z)f2(z) € HS(RY) and
(2.11) Ix(@) f2(@)l o m 4y < Clix(@) L2 ()| oo ) < CllSfall o g):

Then the lemma follows from a combination of (2.9), (2.10) and (2.11) with
(2.8). The proof is completed. ]
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1
Lemma 2.3. There exzists a positive constant C such that, for by € Hi (RT)
—1_1
and he € Hy 2 *(RY),

sup I95(0) . lzzny < € (Il 3+l g )

Proof. Tt suffices to prove the lemma for hy,hy € C§O(RT). It follows from
Lemma 3.1 in [3] that

1U1(2, 8)l| 22 m+)

olr=ive? =1
VA1

X ( /0 +°°<Mﬁh1(§> - ha(o)e—““mfds)

+oo
<OH‘/2“ - / £)e~ /P Tegg
(2.12 H /2u _ /+oo —wm€d€

L2 (1,+00)

L2 (1,+00)

L2(1,+00)

< C||<1+n)% /0 ha (€6 d

L2(0,+00)

1 3 +eo ;
re|rtaent [ nage

< 0 (Il g gy + el 5o )

Note that for
00 ) oo s )
UG = [ gV o du = | stuts —eioas
1 0 u(s)

where u(s) > 0 is the solution satisfying s = /u? — 1 for s > 0, we have

L2(0,+00)

L) 1 _1
10 @)lzz0,000 = lg(k5)) 5 20,001 = g ) (1s* = D* 0% 12 (1,00)-

Then we have
1U2(z, )]l L2 ®+)

(219 Va1 - [ ha(e T e
0

<C

L2(1,+00)
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+co
+c”u—% Rl M G

L2 (1,+00)
1 +oo
<ofasnt [ h@e
0 L2(0,400)
1 Foo
+C [(Hn)‘z | malere e
0 L2(0,+00)
S Clall g g + Ol
The lemma now follows from (2.12) and (2.13) together with Lemma 2.1. We
complete the proof. |

1
Lemma 2.4. There erists a positive constant C' such that, for hy € Hi (R")
_1
and hy € Hy *(RY),

o 4
([ Wil ey ) <€ (il g+l )

Proof. For given real functions K € C(R) and h € Cy(R") satisfying K(—u) =
K(p), we define

+oo +oo
GGk = [ K(we #VeTte-lul= ( / B(E)eV ""’”“df) du
0

1

and
+o0 +o0

HER) = | K(pe Vi Tein/i-07m ( | heeny “2—1%5) dp.
1 0

Then

G(K,h) + GE, )
K(em /et ([ hggem /T ieae)
0

H

[ui>1
+o0

= K(w—l(n))m’;—;(meinte—lv—l(n)iw (/0+oo h(§)e“i"£d§) dn,

and similarly,
H(K,h)+ H(K,h)
+ -1
= o;((¢—1( ))d“’ (n) eint =i~ (MV/1=(1/e~ (n))22 (/ 5)6_“’5d£)dn
—o0 dn
where, u = ¢ 1(n) is the inverse function of n = ¢(u) = py/p? — 1. For any

g(z,t) € Ltg (R, LL (RT)), denoting by

+o0 0o
e m =g [ st by = [ weeds

hale el
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we deduce by Hélder’s inequality and the Sobolev embedding theorem
+oo +o00
/ / (G(K, h) + GK, B)g(x, t)dzdt
0

+oo  ptoo -1 1 N
= o / K(w—l(n))di-@ lem e g(g, —n)h(n)dndz

dn
e dip! n)
<cf” }1+|n|>% oo g i | L] oy
dn (L+ 10D o)

K (o de=t(n) -
e R e | I [P

1 _ do~(n) »
< ofas it mn g Do) BURCCE T

n

which implies that
IG(K, h) + G(K, W)l Lt R+ L0 (R +)

< |IG(K,R) + G(K, b)l| 11 (r, Lo (r+))
1 -1 do™ 1( )5
(2.14) < Cla+mD)iK(e () i h(n) .
Similarly, n
| H (K, b) + H(K, k)|l 3w+, 020 )
(215) <o|arimie i@ Dim|
7 LZ(R)

Rewrite Uy (z,t) and Us(z,t) as

1 1 1 1
Us(@,t) = 3Gl )+ -G/ = 1) = oG )+ 3G (1, o),

and

1 2 ; 1 ]
Us(o,t) = = o= H(—rms, h)+ 5= H () — 5= H (s o)+ 5 H (L h2).

2 ‘//1,2—1, 2w 2 /1’2—1

Then we get from (2.14) that
WO (2, 1) + Ur(@, )|l L4+ 0o m+))
< ¢ (Im@+n)ha(llzz + I (1 4+ In) =R (r)l2 )

+0 (110 + )~ ha(m)lz ) + (1 + I~ o) 23 e

2.1 < 1
216) < (Il 3+l )
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and from (2.15),

@17 Wi, + T Dl sy < © (il o 0l )

Then the lemma follows from (2.16) and (2.17) together with Lemma 2.1. We
complete the proof. ]

Let (&) = £(1 + |€[*)Y/2. For f,h € S'(R) define

+OO . . ~
(2.18) V) (f) = /_ e1o(€) gizt F(£)de.
1 [t R
(2.19) Vl(t)(f)) — 5/ [ ztd?(E)—Ha:E + e—ltd)(ﬁ +z;c§]f( )
and

(2.20) Va(t)(8.h) = /+00 [A(f)ei(—t¢(§)+w§) + B(E)ei(t¢(€)+m§)] de,

—o0

where A(§) = mi—gﬂ and B(¢) = —271—3(527/—2, f and h are the Fourier

transform of f and & respectively. Denote by
Wr()(f,0xh) = Vi(t)(f) + Va(t)(0xh).
Then u(z,t) = Wr(t)(f, 0, k) is the formal solution to the initial-value problem

Ut — Ugpe + Uzaza = O,t > 0,.’1) € R,
(2.21) { u(z,0) = (z), 1s(z,0) = Oh.

Lemma 2.5. Let T > 0. There exists a positive constant C such that, for
f € L*(R) and h € Hy "(R) with h(z) = —h(~z),

IX(OWR(E)(f, 0eh)la=oll .3 )<0(nf||m(m+nhnmm),

IO R(OS, Be)emoll 3 - ) < C (12 + Il )

1 (R)
and

T q
(/0 HWR<T><f,a¢h>||‘z;om+)df> <0 +T%) (If ez + Whll 2 x) ) -

Proof. 1t suffices to prove the lemma for f,h € C§*(R) with f(0) = 0 and
h(z) = —h(—z). The results in [2] show that u(z,t) = Wgr(t)(f,0-h) is the
classical solution of the initial-value problem

Ot — Opat + Oppart =0, —00 <z < +00,t >0
u(z,0) = f(x), Ou(z,0) = 0:h(x), —00o <z < +00,

and Wr(t)(f,8:h) € C2(R x R) with Wr(t)(f, 2h)|(z.t=(0.0) = £(0) = O.
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For given a, 8 € R,
0 [V () (H)l3gmt )
z€ER
= [l (L [P Forsr (VO ) ey
< C|IrP @+ F© 161 lezomsi)
<c||s@a+ @) = f© 18 ©*
< ofjgrarign e

L2(R)

LI(®)

=C Hf“ a,28-1%

LE(R) H, ®)’

which, together with (2.19) and (2.20), implies

Sup [[Wr(0)(f, 0a)l 1 gy < C (I llny + Ml s ) -

Then, x(O)Wr(E)(f, Och)|z=0 € HO“l (R™) because of Lemma 2.2, and the first
inequality in the lemma holds. To prove the second inequality in the lemma,
we define

o(z,t) = /0 OO R(r)(f. . h)dr, (z.1) € R x R

Obviously v(0,t) € Co(R"), L& — ()3, Wr(t)(f, 8:h), and v(z,t) solves
the initial-value problem

attv - 8zzv + a:z::z:amv - 8zwh($)7 TE Ra t € R+a
v(z,0) = 0, Syv(z,0) = 0, f(z).

By Duhamel’s principle we can rewrite v(z,t) as

i
o(z,8) = Vo (1) (Buf(2)) + / Va(t — 7)(Baah(z))dr, £ > 0.
0
Thus, for t > 0,
v(0,1)
i
= %(t)(azf)lxzo + / ‘/2(t - T)(azzh)lz:OdT
Fo0 )
)(0a f)lemo + / / 2§sgn
Ple=o o 52

y (e—zt¢(£)+w¢(€) - eiw(e)—iw(s)) dedr



BOUSSINESQ EQUATION ON THE HALF LINE 91

+oo [
= V2(t)(0x f)]a=0 + /_ —(—f(f)g—z) (2 — e e—ifd’(f)) 3

+oo +oo i
(0@ Dlao+ | ff; g3 [T MO (cnot o)
£)(0e f)le=0 = ; ()(g)lz=0 — —V £)(9)]=o,

with g(z) = [~ +o°: 1’:5?2 e**¢d¢, the last inequality holds because of h( & =

h(—¢€). Denote by
1 1
T@) = Vo) @e oz = 5V ()()lom0 = 5V(~1)(8)lmo:
It follows from the similar argument to that used in the proof of the first
inequality in the lemma that J(t) € H#(R) and

7@, g, < € (1122w + Wl y) -
Note that x(¢)J(t) = v(0,¢) and J(0) = v(0,0) = 0. Lemma 2.2 implies
v(0,8) = x(t)J(¢) € Hy (R*) and
(2.22) 0.0 18 1y <€ (e + Wbl ) -
Then
dv(0,1)

0 Wr)(f,0:h)|e=0ll _1 _1
IO (S, 0eBl ol o ||H;%,_%(R+)

TR+

< OO0 g . <€ (I ke + bl gz

4( +)
The second inequality in the lemma is proved. The last inequality in the lemma
comes from the results in [8}, the proof is omitted. O

For any f € LQ(IR@L) and h € Hy ' (R*) we define (f(z), h(z)) = (f(z), h(x))
for z > 0 and (f(z), h(z)) = (0, —h(—z)) for z < 0, and define

We(t)(f,0:h) = Wr()(f, 8:h) = Wi(x(£)g1(t), x(t)g2(2)),
where o o
/a1 (t) = WR(t)(f’ aﬂch),.r:()a QZ(t) = azWR(t)(fa arh),x:l)
are the trace of Wr(t)(f,8:h) and 8, Wg(t)(f,8:h) at & = 0, respectively.
Lemma 2.3 and Lemma 2.5 mean We (t)(f, 0;h) is well-defined and solves the
initial-boundary-value problem
{ Ut — Uge + Ugaeze = 0,6 >0, 2 > 0,
(2.23) u(0,t) = 0,u,(0,1) = 0,
u(z,0) = f(z),u(z,0) = d. h(z).
The following lemma comes from a combination of Lemma 2.3 and Lemma 2.4
with Lemma 2.5.
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Lemma 2.6. There exists a positive constant C such that, for f € L*(R")
and h € Hy'(Rt),

sup [Wot)(f, Mz < © (1122 + Ml ) )

W=

T
(/ HWc(t)(f,5wh)dt||4L;o(R+)> <0 +TH) (Ifllraaes + Il go sy -

Lemma 2.7. Let T > 0 and let g(z,t) € L*([0,T), L2(R")). Then the linear
tnitial-boundary-value problem

{ Ut — Ugg + Ugzze = Oz, t > Oa > 0’

(2.24) u(0,t) = 0,u,(0,t) =0,

u(z,0) = 0,u(z,0) =0,
has a solution W(t)(g) € C([0,T], L(R*)) N LE([0, T], L (RY)) such that
sup [{Wr(t)(9)llz®+) < CllgllLio,77,02R+))
0<I<T

and
1
4

T
(/ 1|W1<t)<g>||‘z;o(m+>dt) < G+ T%)lgll (0,7, 22 (& +)-
0

Proof. Choose gn(z,t) € C([0,T],Cg°(R")) such that g, — ¢ in L*([0,T],
LZ(R*)) as n — +o0. It follows from Duhamel’s principle that

Un(IL',t) :/0 WC(t - T)(O, azzgn(m’T))dT

is the solution to the initial-boundary-value problem (2.24) replacing g by g,.
By Lemma 2.6,

T
(2.25) sup ||uallrz®+ S/ llgn(z, )l 2 @+ dT,
0<t<T 0

and
1
4

T
1
(2.26) (/0 ||Un||4Lgo(R+) dt) < CA+T*)gll o go,11, 2R+

and

T
4
su Up — Um + Up — Um oo dt
(2.27) P, I 2w+ (/O | e ) )

< CA+T5)|gn — gmllL1((0,1,22 (R H))-
Then un(x,t) is a convergent sequence in
C([0,T7, LL(R*)) n L; ([0, T], LZ(R*))

1
4
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because of (2.27). Let Wi (t)(g) = lim, 400 un(z, ). Obviously Wi(¢)(g) is a
solution of (2.24). Taking n — +o0 in (2.25) and (2.26) we obtain Wi (t)(g
satisfies the estimates in the lemma. 0

3. The local existence of solutions

In this section we give the proof of Theorem 1.1. To prove the local exis-
tence we are going to use a contraction mapping argument. For some positive
constant § > 0 and T > 0 determined below, we define the set Z2 by

26 _ { u € C([0,T]; L3 (R*)) n L ([0, T); LP (R )) with }
T supsepo, 7] [u(s OllLzw+y + ullLeo, o @y <0 f°

Let & be the product space
L*(RY) x Hy '(RY) x HE(RY) x #; 278 (RY)

with the norm

|(f,h, b1, ho)l|x

= If @2y + (@)l g1 m+) + 1B D] + (|2 ()

HE R+) st ey
For (f,h,h1,h2) € X and u € Z4 we define a mapping ®(u) by
®(u) = We () (f, 0:h) + Wi (t)(hy, he) — Wi ((Ju|*u(T))zs)dT.

We only need to prove that ®(u) is a contraction mapping from 24 into 2%
for suitable § > 0 and 7" > 0. Denote by & = ||(f, h, h1, h2)||x and denote by

1
4

T
Wulllr = sup [ullpz®+) + </ llu(%t)Hi;o(Rﬂdt)
0<t<T 0

For u,v € Z%, it follows from Lemma 2.3, Lemma 2.4, Lemma, 2.6 and Lemma
2.7 that

@)l
. T
< C(1+T%) (50 +/0 || |U(T)|K+IHL5(R+) dT)
(3.1) < C(1+T%) <<50+Tiiﬁ sup flulng(R+)|||u|||?)
te[0,77]
< CA+TH) (b0 + 7704,
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and
(3.2)
l|®(u) — 2()|lIr

L T
<Ccu+Th / lu(r)Fu(r) = [o() =0l 2 sy 47

. T
<C(1+ T“_)/O (H“(T)Hz;o(kﬂ + ||U(T)||z;o(m+)) llu(r) — o(D)ll 2 m+) 47

Lymizs K K
SCA+THT T sup |lu—vllrz@+ (Il + [lv]li7)
te[0,T)

< CO(L+THT'T sup [lu—ovl| 2@+
t€[0,T]

For given §p > 0 let § = (2C + 1) and choose T' > 0 so small that

4—r 4—x 1
T < =,
-8

(3.3) C(1+T3)(6 + T75 61) < 6, C6*(1 + TH)T

A combination of (3.1), (3.2) with (3.3) implies that ®(u) is a contraction
map from err into Z%, thus we establish the existence and uniqueness of local
solution to the initial-boundary-value problem (1.1) in the set Z$. In fact the
uniqueness holds in a large class Z = C([0,T]; L*(IR*)) N L*([0, T]; LS (RY)).
Suppose @ € Z satisfying the initial-boundary value data, then it is easy to see
that for T < T sufficiently small & € Z%,. Therefore u = @ in [0,7’] x R*.
Reapplying this argument we obtain the desired result.
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