• Title/Summary/Keyword: Laplace's Method

Search Result 98, Processing Time 0.021 seconds

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation

  • Calim, Faruk Firat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.761-774
    • /
    • 2016
  • Curved beams' dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin's algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

Analysis of Linear Consolidation Problems by the Boundary Element Method (경계요소법에 의한 선형 압밀문제의 해석)

  • 서일교
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.129-136
    • /
    • 1995
  • This paper presents a boundary element method for obtaining approximate solutions of 2-dimensional consolidation problems based on the Biot's linear theory. Laplace transform is applied to differential equation system in order to eliminate the time dependency. The boundary integral equations in transformed space are formulated and the fundamental solutions are shown in a closed form. In order to convert the transformed solutions to the ones in real space, the Hosono's numerical Laplace transform inversion method is applied. As a numerical example, a half-space consolidation problem subjected to a strip local load is selected and the applicability of the method is demonstrated through the comparison with the exact solutions.

  • PDF

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

Evaluation of Ride Comfort in Time Domain by Using z-Transform (z변환을 이용한 시간영역에서의 승차감 평가)

  • Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Sang-Soo;Kim, Ki-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.495-500
    • /
    • 2011
  • In evaluating the ride comfort of railway vehicles, relationship between passenger's feeling and vibration characteristics is very important because human feeling is dependent on frequency spectrum of vibration. Therefore, the weighing curves in frequency domain are used to evaluate the ride comfort of railway vehicles. These curves have been defined in the Laplace transfer functions. It is necessary to convert the Laplace weighing function to the z weighing function in order to obtain the rms value in the time domain. In the present paper, we have applied Tustin's approximation to transform the Laplace weighing function to the z weighing and validated this method by reviewing the various cases.

Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory

  • Mehmet Bugra Ozbey;Yavuz Cetin Cuma;Ibrahim Ozgur Deneme;Faruk Firat Calim
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.413-426
    • /
    • 2024
  • This paper investigates the dynamic behavior of a simply supported viscoelastic plate made of functionally graded carbon nanotube reinforced composite under dynamic loading. Carbon nanotubes are distributed in 5 different shapes: U, V, A, O and X, depending on the shape they form through the thickness of the plate. The displacement fields are derived in the Laplace domain using a higher-order shear deformation theory. Equations of motion are obtained through the application of the energy method and Hamilton's principle. The resulting equations of motion are solved using Navier's method. Transforming the Laplace domain displacements into the time domain involves Durbin's modified inverse Laplace transform. To validate the accuracy of the developed algorithm, a free vibration analysis is conducted for simply supported plate made of functionally graded carbon nanotube reinforced composite and compared against existing literature. Subsequently, a parametric forced vibration analysis considers the influence of various parameters: volume fractions of carbon nanotubes, their distributions, and ratios of instantaneous value to retardation time in the relaxation function, using a linear standard viscoelastic model. In the forced vibration analysis, the dynamic distributed load applied to functionally graded carbon nanotube reinforced composite viscoelastic plate is obtained in terms of double trigonometric series. The study culminates in an examination of maximum displacement, exploring the effects of different carbon nanotube distributions, volume fractions, and ratios of instantaneous value to retardation times in the relaxation function on the amplitudes of maximum displacements.

Study on magnetic field mapping within cylindrical center volume of general magnet

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.30-36
    • /
    • 2016
  • For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

THE DOUBLE FUZZY ELZAKI TRANSFORM FOR SOLVING FUZZY PARTIAL DIFFERENTIAL EQUATIONS

  • Kshirsagar, Kishor A.;Nikam, Vasant R.;Gaikwad, Shrikisan B.;Tarate, Shivaji A.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.177-196
    • /
    • 2022
  • The Elzaki Transform method is fuzzified to fuzzy Elzaki Transform by Rehab Ali Khudair. In this article, we propose a Double fuzzy Elzaki transform (DFET) method to solving fuzzy partial differential equations (FPDEs) and we prove some properties and theorems of DFET, fundamental results of DFET for fuzzy partial derivatives of the nth order, construct the Procedure to find the solution of FPDEs by DFET, provide duality relation of Double Fuzzy Laplace Transform (DFLT) and Double Fuzzy Sumudu Transform(DFST) with proposed Transform. Also we solve the Fuzzy Poisson's equation and fuzzy Telegraph equation to show the DFET method is a powerful mathematical tool for solving FPDEs analytically.

Three Dimensional Medical Image Rendering Using Laplace's Equation (라플라스 방정식의 해를 이용한 삼차원 의학 영상 랜더링)

  • Kim, S.M.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2918-2920
    • /
    • 2000
  • A new multi-planar interpolation technique for three dimensional medical image rendering is proposed. In medical imaging. resolution in the slice direction is usually much lower than those in the transverse planes. The proposed method is based on the solution of the Laplace's equation used in the electrostatics. In this approach. two contours in the source and destination planes for a given object is assumed to have equi-potentials. Some preprocessing and post-processing including scaling. displacement. rotation from the centers of mass are involved in the algorithm. The interpolation solution assumes mostly smoothing changes in between the source and destination planes. Simultaneous multiple interpolation planes are inherently obtained in the proposed method. Some experimental and simulation results are shown.

  • PDF

Position Controller Implementation Using the Fractional Order Derivative (유리차수 미분을 이용한 위치제어기 구현)

  • Kang, Jung-Yoog;Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.185-190
    • /
    • 2019
  • This study aims to apply the mathematical method of fractional order derivatives to the controller that controls the system response. In general, the Laplace transform of the PID controller has an exponent of the integer order of s. The derivative of the fractional order has a fractional exponent of s when it is transformed by Laplace transform. Therefore, this controller proposes a design method with the result of discrete time conversion. Because controllers with fractional exponents of s are not easy to design. This controller is applied to a standard secondary system and its performance is examined. Then, it applies to solenoid valve which is widely used in industrial field. A Luenberger's observer was designed to estimate the disturbance state and the observed state was applied to the fractional order controller. As a result, uniform and precise control performance was obtained. It was confirmed that the position error of the steady state is within 0.1 [%] and the rising time is within about 0.03 [s].