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Abstract

For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space.
Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the
magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace’s equation in the
cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in
the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line
(PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and
a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is
feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.
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1. INTRODUCTION

In the application of magnet, it is important to obtain
accurate information about the magnetic field [1-2].
Normally a map of the magnetic field distribution is
frequently needed to guarantee the characteristics of the
magnetic field.

In order to map the field, the easy and direct way is to
measure the magnetic field at each point in the
interesting volume. However the measurement time will
be unendurable due the large number of measurement
points. The indirect way for the mapping the magnetic
field is to use the mathematic tool. Considering the
magnetic field should satisfy the Maxwell’s equation, the
field in the magnet can be described by some mathematic
functions. Applying measurement data to fit these
mathematic functions, the magnetic field in the whole
volume can be calculated.

According to the different mathematical equations,
some indirect mapping methods have been developed in
practice. H. Takeda introduced a numerical method to
map the field from 2D field measurements of the surface
of a cylinder [3]. This method is flexible, but cannot be
applied to the solenoidal field. P. Vernin described a
method to map the residual magnetic flux, which is the
difference between the 3D model and the measured flux
[4]. This method is powerful, but it is complex to build a
3D model of magnet, when the magnet is unknown. In
order to obtain a mapping method for the various types
of magnetic field, Lorentzian curves are employed to fit
the field in the mapping method.

In this paper, according to the solution of the Laplace’s
equation in the cylindrical coordinate system, a PCL
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arrangement method for the magnetic field mapping was
presented. The theorem of the PCL arrangement method
was described in section 2. Using the PCL arrangement
method, the magnetic flux density in the center of an
ECRIS magnet and a quadrupole magnet were mapped in
section 3, respectively. As shown in the mapping results,
the PCL arrangement method is feasible and convenient
to map the magnetic field within a cylindrical volume in
the center of magnet. And the PCL arrangement method
can be widely applied in the magnetic field generated by
various types of magnet.

2. THEOREM FOR MAPPING

2.1. Solution of Laplace’s Equation

According to the Maxwell’s equations, the magnetic
scalar potential V in a static magnetic field should be
satisfied the Laplace’s equation when there are no current
sources or current sinks in the volume. In the cylindrical
coordinate (p, @,z), where p is the radial distance, ¢
is the azimuthal angle, and z is the height, the
fundamental solutions of the Laplace’s equation are the
Bessel function J,(mp) , Y,(mp) , trigonometric
functions cosng, sinng, and exponential functions
ef™  respectively. Here, n and m are constants
introduced in the process of separation of variables
method. The general solution of the Laplace’s equation in
the cylindrical coordinate system is their linear
combination.

For the magnetic scalar potential V in the center
volume, the Bessel function can be expanded as a power
series of p, the linear combination of exponential
functions are denoted as functions A,,(z) and
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B, m(2). And the magnetic scalar potential V' can be
written as [5]

Vi >zz[§j A @sining)+ B, (eostng)] (1)

n=0 m=0 0

where p, is the reference radius.
Then the magnetic flux density can be calculated by
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In order to apply these equations to calculate the
components of the magnetic flux density, we need to
know the functions 4, .,(z) and B, ,,(z). Considering
the magnetic scalar potential V should satisfy the
Laplace’s equation, substituting (1) into the Laplace’s
equation, we can get

Al A 0 (5)
and
Bn‘m(z):imjﬁ; Bna(2) (6)

According to (5) and (6), the functions A, ,,(z) and
B, m(2) can be calculated by
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The magnetic field mapping is to find these unknown
function A4, ,(z) and B, ((2).

2.2. Lorentzian Curve

In order to obtain the unknown functions A, ,(z) and
Byo(z) , the form of these functions should be
determined at first. In the magnetic scalar potential V,
the unknown functions A,,(z) and B,,(z) are
continuous in z and have an infinite order derivative.
Furthermore, the value of functions A,,(z) and
B, 4(z) approach to zeros when z is infinite. Due to the
shape of Lorentzian curve, the unknown functions
Apo(2) and B, ,(z) can be approximated by the sum of
Lorentzian curves. The Lorentzian curve f(x) can be

expressed by

)= )

(=) +L*

where x, is the center of curve, a and L determine the
magnitude and the width of the curve.

Assume there are N curves in the mapping procedure,
the unknown functions A4,,(z) and B,(z) can be
approximated by

mo(z):gz—ﬁj‘_“ e (10)
and
N bnJ
Bn,O(Z):ém (11)

where a,; and b,; are the unknown constants, z,;
can be determined by the height of measurement points,
L, is a constant. The value of z,; and L, can be
optimized by the measurement data.

Considering the components of magnetic flux density
are the sum of sinng and cosng, the coefficients of
sinng and cosng can be obtained by the discrete
Fourier transform (DFT). Then for sinn¢g terms in the
component B,, we can get
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If the N coefficients have been obtained at different
height z, using (12), a linear equations set for a,; can
be obtained, and written as the matrix form

B,n =Ma, (13)

where B, is the vector of the coefficients of sinng
term according to the DFT, M,, is the matrix whose
components are calculated by (12), and a,, is the vector
of the unknown constants a,,;.

Using the coefficients of cosn¢ term, we can solve
the unknown constants b,;. Once all of a,; and b,;
are known, the component B, can be calculated by (2).
Similarly, we can calculate the components B, and B,.

2.3. PCL Arrangement Method

In the mapping procedure, the measurement points can
be arranged along several circles, which are in parallel
with the plane z = 0. The trajectories of probes are
several PCLs in the center volume of magnet. And the
measurement points are distributed uniformly on each
circle. This arrangement method of measurement points
is named by the PCL arrangement method and shown in
Fig. 1. And the parameters of the PCL arrangement
method are listed in Table I.

The process of the magnetic field mapping can be
described in Fig. 2. According to the PCL arrangement
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method, the components of the magnetic field are
measured in the center of the magnet. Then using the
Fourier transform with respect to ¢, the coefficients of
trigonometric function of ne in (2), (3), and (4) can be
obtained. And these coefficients can be viewed as the
functions of (p,z) as shown in (12). The Lorentzian
curves are employed to fit these functions. Considering
the values of p and z are known from the parameters
of the PCL arrangement method, the unknown constants
a,; and b,; can be solved. After that then substitute
them into (10) and (11), we can get the unknown
function A4,,(z) and B, (z). At last, the components
of magnetic field at other points can be calculated using
(2), (3), and (4).

The measurement points in PCL arrangement method

Top view

0.5(8-R-

(b)
Side view
we ¢ o

Fig. 1. The measurement points in the PCL arrangement
method. (a) position of measurement points (b) top view
(c) side view.

TABLE |
PARAMETERS OF THE PCL ARRANGEMENT METHOD.
Parameter Description

R Radius of cylindrical surface
H Height of cylindrical surface
® Azimuthal angle
N, Number of points on each circle
Ny, Number of circles
To Reference radius

Measurements using PCL method

B,(p.9.2) B,(p.0.2) B,(p,02)

l

Fourier transform with respect to ¢
B,n(02) B,.(p.2) B,,(p2)

l

Fitting with Lorentzian curves

Obtain the functions

Anvo(2) B.o(2)
|

Calculate the field at other points

Fig. 2. The process of the field mapping using the PCL
arrangement method.

3. CASE STUDY

3.1. ECRIS Magnet

The ECRIS is used for providing intense highly
charged ion beams to the linear accelerator. The structure
of ECRIS magnet is composed of four axial coils and six
radial coils. The configuration of the axial coils consists
of four coaxial solenoids with different dimensions and
currents. And the six radial coils is in a sextupole
configuration. The sextupole is placed inside the
solenoids (sextupole-in-solenoid geometry) as shown in
Fig. 3. The magnet system provides an axial magnetic
field from four solenoid coils and a radial magnetic field
from sextupole magnet to confine the ECR plasma
stream. The designed parameters of coils in the magnet
system have been listed in Table II.

In this case study, the magnetic field generated by the
solenoid was simulated by a “rzBI” program with high
accuracy [6]. Considering the magnetic field generated
by the straight wire can be calculated by the closed-form
expression, the magnetic field generated by the sextupole
magnet was simulated by six identical current loops as
shown in Fig. 4. Then the magnetic field can be
calculated using the superposition of fields generated by
straight lines and the solenoid. In the case study, it is not
necessary to use the FEM (finite element method) in the
magnetic field calculation.

Fig. 3. Structure of ECRIS magnet which is composed of
four solenoids and a sextupole magnet.

TABLE 11
PARAMETERS OF COILS IN ECRIS MAGNET.

. Solenoid Coils Sextupole
Unit == 2 3 4 Coils
Axialposition 0 o50 73 67 250
of center
Inner mm 205 205 205 205 100
radius
Depth mm 114 36 72 99 65
Width mm 125 51 74 106 41
Turns/coil 9965 1283 3725 7338 1863
Current A -169 154 148 -139 250
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Location of coils in the ECRIS magnet
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Fig. 4. Six identical current loops for the simulation of
sextupole magnet in the ECRIS magnet.

Measurement points in ECRIS Magnet using PCL method
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Fig. 5. The position of the measurement points and the
mapped volume in the ECRIS magnet using PCL method.

TABLE Il
PARAMETERS OF PCL METHOD FOR MAPPING.
Description Symbol Value
Radius R 70 mm
Azimuthal Angle ) 5.625°
Height H 1600 mm

Number of points on each circle N, 64

Number of circle N, 161
Distance between circles D, 10 mm
Reference Radius o 70 mm

Assume the mapped volume is a height 1000 mm and
radius 70 mm cylindrical volume in the center of ECRIS
magnet. The measurement points using the PCL
arrangement method have been shown in Fig. 5, and the
parameters of the PCL arrangement method are listed in
Table I11.

Using to the PCL arrangement method, the
components of magnetic flux density at the measurement
points in the center of the ECRIS magnet can be obtained.
According to the DFT, the maximum value of n in (2),
(3), and (4) can be calculated by N,/2. Considering
ECRIS magnet has a six-fold symmetry, the components
of the Fourier series have greater values when n is 3, 9,
15, and so on. In the mapping procedure, the components
of the Fourier series, which magnitude is too small, can
be neglected.
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Fig. 6. Absolute error in the calculation of B,; changes
with the value of L.
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Fig. 7. Terms in the calculation of component B,;.

Maximum magnitude with different m
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Fig. 8. Maximum magnitude of terms in the calculation
of component B;.

The wvalue of L, can be optimized by the
measurement data. Illustrated by the case of n = 3 term
in the component B, the error in the mapping procedure
has been calculated as shown in Fig. 6. When L5 is
150 mm, the error in the calculation can get a minimum
value.

According to (12), the component B,; can be
calculated by the sum of high order derivatives of
Lorentzian curves. The magnitudes of the terms in (12)
will reduce with the increasing of m as shown in Fig. 7
and the maximum value in each m have been plotted in
Fig. 8. When m is up to 10, the absolute error in the
calculation of B,; will less than 0.01 Gauss.
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Once all of sinng and cosng terms in the
component B, have been obtained, using (2), the
component B, at any point in the mapped volume can
be calculated. In the same way, the components B, and
B, in the volume can be obtained. The absolute errors in
the components B,, B,, and B, have been shown in
Fig. 9. The mapping result of B, is worse than the
others, however, the absolute error in the mapping result
is almost less than 0.1 Gauss. Considering the range of
field strength instrument using the Hall effect is from
0.1 mT to 3x10* mT, the mapping result is acceptable.

Using the HCL arrangement method introduced in the
reference [7-8], the absolute errors of each components
in the mapped volume have been shown in Fig. 10.
Compared with the mapping result using the HCL
arrangement method, the radial component B, and the
azimuthal components B, mapped using the PCL
arrangement method are better than the mapping results
using the HCL arrangement method. And the mapping
result using the HCL arrangement method becomes
worse at the both end of the mapped volume.

The distribution of the components of the magnetic
field in the partial of the mapped volume have been
shown in Fig. 11.

Maximum error in mapping result using PCL method
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Fig. 9. Absolute error in the components of magnetic flux
density mapping in the ECRIS magnet using PCL
method.

Maximum error in mapping result using HCL method
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Fig. 10. Absolute error in the magnetic flux density
mapping in the ECRIS magnet using HCL method.

The component B, in the center of ECRIS with radius = 70 mm
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Fig. 11. The distribution of the components in the
magnetic flux density in the center of ECRIS magnet
with radius = 70 mm. (a) the component B, (b) the
component B, (c) the component B, .

3.2. Quadrupole Magnet

Quadrupole magnet is useful in the particle beam
focusing because the magnitude of the magnetic field
generated by the quadrupole magnet grows rapidly with
the radial distance from the longitudinal axis. In the case
study, the quadrupole magnet is simulated by four
identity current loops as shown in Fig. 12 and the
parameters of these current loops are listed in Table IV.

Assume the mapped volume is a height 1000 mm and
radius 170 mm cylindrical volume in the center of the
quadrupole magnet. The measurement points using the
PCL arrangement method have been shown in Fig. 13,
and the parameters of the PCL arrangement method are
listed in Table V.
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Location of coils in the quadruple magnet
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Fig. 12. Four identical current loops for the simulation of
the quadrupole magnet (in order to show four loops,
there are some gaps between them).

TABLE IV
PARAMETERS OF CURRENT LOOPS FOR QUADRUPOLE MAGNET.
Description Value
Height 500 mm
Length 500 mm
Distance between opposite loops 500 mm
Operating current 300 kA

Measurement points in Quadruple Magnet using PCL method
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Fig. 13. The position of the measurement points and the
mapped volume in the quadrupole magnet

TABLE V
PARAMETERS OF PCL METHOD FOR MAPPING
Description Symbol Value
Radius R 170 mm
Azimuthal Angle @ 10°
Height H 1600 mm
Number of points on each circle N, 36
Number of circle N, 161
Distance between circles D, 10 mm
Reference Radius o 170 mm

The uniformity on the radius 130 mm in the quadrupole magnet
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Fig. 14. The uniformity in the quadrupole magnet on the
surface of the cylinder with 130 mm radius

In the center of the quadrupole magnet, the
components of the magnetic field is a four-fold symmetry.
The components of the Fourier series have greater values
when n is 2, 6, 10, and so on. Define the uniformity of
the field in the quadrupole magnet is

B,:(2)
B,(2)|

x100% (14)

where B,s(z) and B,,(z) are the n =6 term and the
n =2 term in the Fourier series with respect to z,
respectively.

According to the mapping result and the calculation
result, the uniformity on the radius 130 mm can be
obtained as shown in Fig. 14. The uniformity from the
mapping results is almost same as the uniformity from
the calculation results from the simulation.

The mapping error is checked by the difference
between the mapping result and the simulation result.
The maximum absolute error on the surface of circle with
respect to z have been plotted in Fig. 15. Compared
with the mapping error using the Fourier transform
method introduced in the reference [3], the PCL
arrangement method can obtain a more accurate mapping
result as shown in Fig. 16.

Maximum error in mapping result
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Fig. 15. Absolute error in the components of magnetic
flux density mapping in the quadrupole magnet using the
PCL arrangement method.
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Maximum error in mapping result
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Fig. 16. The mapping error using the method from the
reference [3].

4. CONCLUSION

Using the solution of the Laplace’s equation in the
cylindrical coordinate system, a PCL arrangement
method is applied to map the magnetic field within the
center volume of magnet. The method is suitable for the
magnetic field mapping in a cylindrical volume, and can
be widely applied in the field mapping generated by
various types of magnet. The magnetic field mapping in
the ECRIS magnet and the quadrupole magnet have
shown that the PCL arrangement method is feasible and
convenient.
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