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Abstract 

 

For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. 

Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the 

magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace’s equation in the 

cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in 

the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line 

(PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and 

a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is 

feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet. 
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1. INTRODUCTION 

 

In the application of magnet, it is important to obtain 

accurate information about the magnetic field [1-2]. 

Normally a map of the magnetic field distribution is 

frequently needed to guarantee the characteristics of the 

magnetic field. 

In order to map the field, the easy and direct way is to 

measure the magnetic field at each point in the 

interesting volume. However the measurement time will 

be unendurable due the large number of measurement 

points. The indirect way for the mapping the magnetic 

field is to use the mathematic tool. Considering the 

magnetic field should satisfy the Maxwell’s equation, the 

field in the magnet can be described by some mathematic 

functions. Applying measurement data to fit these 

mathematic functions, the magnetic field in the whole 

volume can be calculated. 

According to the different mathematical equations, 

some indirect mapping methods have been developed in 

practice. H. Takeda introduced a numerical method to 

map the field from 2D field measurements of the surface 

of a cylinder [3]. This method is flexible, but cannot be 

applied to the solenoidal field. P. Vernin described a 

method to map the residual magnetic flux, which is the 

difference between the 3D model and the measured flux 

[4]. This method is powerful, but it is complex to build a 

3D model of magnet, when the magnet is unknown. In 

order to obtain a mapping method for the various types 

of magnetic field, Lorentzian curves are employed to fit 

the field in the mapping method. 

In this paper, according to the solution of the Laplace’s 

equation in the cylindrical coordinate system, a PCL 

arrangement method for the magnetic field mapping was 

presented. The theorem of the PCL arrangement method 

was described in section 2. Using the PCL arrangement 

method, the magnetic flux density in the center of an 

ECRIS magnet and a quadrupole magnet were mapped in 

section 3, respectively. As shown in the mapping results, 

the PCL arrangement method is feasible and convenient 

to map the magnetic field within a cylindrical volume in 

the center of magnet. And the PCL arrangement method 

can be widely applied in the magnetic field generated by 

various types of magnet. 

 

 

2. THEOREM FOR MAPPING 

 

2.1. Solution of Laplace’s Equation 

According to the Maxwell’s equations, the magnetic 

scalar potential 𝑉 in a static magnetic field should be 

satisfied the Laplace’s equation when there are no current 

sources or current sinks in the volume. In the cylindrical 

coordinate (𝜌, 𝜑, 𝑧), where 𝜌 is the radial distance, 𝜑 

is the azimuthal angle, and 𝑧  is the height, the 

fundamental solutions of the Laplace’s equation are the 

Bessel function 𝐽𝑛(𝑚𝜌) , 𝑌𝑛(𝑚𝜌) , trigonometric 

functions cos 𝑛𝜑 , sin 𝑛𝜑 , and exponential functions 

𝑒±𝑚𝑧 , respectively. Here, 𝑛  and 𝑚  are constants 

introduced in the process of separation of variables 

method. The general solution of the Laplace’s equation in 

the cylindrical coordinate system is their linear 

combination. 

For the magnetic scalar potential 𝑉  in the center 

volume, the Bessel function can be expanded as a power 

series of 𝜌 , the linear combination of exponential 

functions are denoted as functions 𝐴𝑛,𝑚(𝑧)  and 
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𝐵𝑛,𝑚(𝑧). And the magnetic scalar potential 𝑉 can be 

written as [5] 
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where 𝜌0 is the reference radius. 

Then the magnetic flux density can be calculated by 
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In order to apply these equations to calculate the 

components of the magnetic flux density, we need to 

know the functions 𝐴𝑛,𝑚(𝑧) and 𝐵𝑛,𝑚(𝑧). Considering 

the magnetic scalar potential 𝑉  should satisfy the 

Laplace’s equation, substituting (1) into the Laplace’s 

equation, we can get 
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and 
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According to (5) and (6), the functions 𝐴𝑛,𝑚(𝑧) and 

𝐵𝑛,𝑚(𝑧) can be calculated by 
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where 𝐶𝑛,𝑚 =
(−1)𝑚𝑛!

4𝑚𝑚!(𝑛+𝑚)!
. 

 

The magnetic field mapping is to find these unknown 

function 𝐴𝑛,0(𝑧) and 𝐵𝑛,0(𝑧). 
 

2.2. Lorentzian Curve 

In order to obtain the unknown functions 𝐴𝑛,0(𝑧) and 

𝐵𝑛,0(𝑧) , the form of these functions should be 

determined at first. In the magnetic scalar potential 𝑉, 

the unknown functions 𝐴𝑛,0(𝑧)  and 𝐵𝑛,0(𝑧)  are 

continuous in 𝑧 and have an infinite order derivative. 

Furthermore, the value of functions 𝐴𝑛,0(𝑧)  and 

𝐵𝑛,0(𝑧) approach to zeros when 𝑧 is infinite. Due to the 

shape of Lorentzian curve, the unknown functions 

𝐴𝑛,0(𝑧) and 𝐵𝑛,0(𝑧) can be approximated by the sum of 

Lorentzian curves. The Lorentzian curve 𝑓(𝑥) can be 

expressed by 
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where 𝑥0 is the center of curve, 𝑎 and 𝐿 determine the 

magnitude and the width of the curve. 

Assume there are 𝑁 curves in the mapping procedure, 

the unknown functions 𝐴𝑛,0(𝑧)  and 𝐵𝑛,0(𝑧)  can be 

approximated by 

 

 
 

 


N

j nnj

nj

n
Lzz

a
zA

1
220,     (10) 

 

and 
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where 𝑎𝑛𝑗  and 𝑏𝑛𝑗  are the unknown constants, 𝑧𝑛𝑗 

can be determined by the height of measurement points, 

𝐿𝑛  is a constant. The value of 𝑧𝑛𝑗  and 𝐿𝑛  can be 

optimized by the measurement data. 

Considering the components of magnetic flux density 

are the sum of sin 𝑛𝜑 and cos 𝑛𝜑, the coefficients of 

sin 𝑛𝜑  and cos 𝑛𝜑  can be obtained by the discrete 

Fourier transform (DFT). Then for sin 𝑛𝜑 terms in the 

component 𝐵𝜌, we can get 
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If the 𝑁 coefficients have been obtained at different 

height 𝑧, using (12), a linear equations set for 𝑎𝑛𝑗 can 

be obtained, and written as the matrix form 
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where 𝑩𝜌,𝑛 is the vector of the coefficients of sin 𝑛𝜑 

term according to the DFT, 𝑴𝑛  is the matrix whose 

components are calculated by (12), and 𝒂𝑛 is the vector 

of the unknown constants 𝑎𝑛𝑗. 

Using the coefficients of cos 𝑛𝜑 term, we can solve 

the unknown constants 𝑏𝑛𝑗 . Once all of 𝑎𝑛𝑗  and 𝑏𝑛𝑗 

are known, the component 𝐵𝜌 can be calculated by (2). 

Similarly, we can calculate the components 𝐵𝜑 and 𝐵𝑧. 

 

2.3. PCL Arrangement Method 

In the mapping procedure, the measurement points can 

be arranged along several circles, which are in parallel 

with the plane 𝑧 = 0. The trajectories of probes are 

several PCLs in the center volume of magnet. And the 

measurement points are distributed uniformly on each 

circle. This arrangement method of measurement points 

is named by the PCL arrangement method and shown in 

Fig. 1. And the parameters of the PCL arrangement 

method are listed in Table I. 

The process of the magnetic field mapping can be 

described in Fig. 2. According to the PCL arrangement 
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method, the components of the magnetic field are 

measured in the center of the magnet. Then using the 

Fourier transform with respect to 𝜑, the coefficients of 

trigonometric function of 𝑛𝜑 in (2), (3), and (4) can be 

obtained. And these coefficients can be viewed as the 

functions of (𝜌, 𝑧) as shown in (12). The Lorentzian 

curves are employed to fit these functions. Considering 

the values of 𝜌 and 𝑧 are known from the parameters 

of the PCL arrangement method, the unknown constants 

𝑎𝑛𝑗 and 𝑏𝑛𝑗  can be solved. After that then substitute 

them into (10) and (11), we can get the unknown 

function 𝐴𝑛,0(𝑧) and 𝐵𝑛,0(𝑧). At last, the components 

of magnetic field at other points can be calculated using 

(2), (3), and (4). 

 

 
 

Fig. 1. The measurement points in the PCL arrangement 

method. (a) position of measurement points (b) top view 

(c) side view. 

 
TABLE I 

PARAMETERS OF THE PCL ARRANGEMENT METHOD. 

Parameter Description 

𝑅 Radius of cylindrical surface 

𝐻 Height of cylindrical surface 

𝜑 Azimuthal angle 

𝑁𝑎 Number of points on each circle 

𝑁ℎ Number of circles 

𝑟0 Reference radius 
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Fig. 2. The process of the field mapping using the PCL 

arrangement method. 

3. CASE STUDY 

 

3.1. ECRIS Magnet 

The ECRIS is used for providing intense highly 

charged ion beams to the linear accelerator. The structure 

of ECRIS magnet is composed of four axial coils and six 

radial coils. The configuration of the axial coils consists 

of four coaxial solenoids with different dimensions and 

currents. And the six radial coils is in a sextupole 

configuration. The sextupole is placed inside the 

solenoids (sextupole-in-solenoid geometry) as shown in 

Fig. 3. The magnet system provides an axial magnetic 

field from four solenoid coils and a radial magnetic field 

from sextupole magnet to confine the ECR plasma 

stream. The designed parameters of coils in the magnet 

system have been listed in Table II. 

In this case study, the magnetic field generated by the 

solenoid was simulated by a “rzBI” program with high 

accuracy [6]. Considering the magnetic field generated 

by the straight wire can be calculated by the closed-form 

expression, the magnetic field generated by the sextupole 

magnet was simulated by six identical current loops as 

shown in Fig. 4. Then the magnetic field can be 

calculated using the superposition of fields generated by 

straight lines and the solenoid. In the case study, it is not 

necessary to use the FEM (finite element method) in the 

magnetic field calculation. 

 

 
 

Fig. 3. Structure of ECRIS magnet which is composed of 

four solenoids and a sextupole magnet. 

 
TABLE II 

PARAMETERS OF COILS IN ECRIS MAGNET. 

 
Unit 

Solenoid Coils Sextupole 

Coils 1 2 3 4 

Axial position 

of center 
mm -250 -73 67 250 

 

Inner 
radius 

mm 205 205 205 205 100 

Depth mm 114 36 72 99 65 

Width mm 125 51 74 106 41 

Turns/coil 
 

9965 1283 3725 7338 1863 

Current A -169 154 148 -139 250 
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Fig. 4. Six identical current loops for the simulation of 

sextupole magnet in the ECRIS magnet. 

 

 
 

Fig. 5. The position of the measurement points and the 

mapped volume in the ECRIS magnet using PCL method. 

 
TABLE III 

PARAMETERS OF PCL METHOD FOR MAPPING. 

Description Symbol Value 

Radius 𝑅 70 mm 

Azimuthal Angle 𝜑 5.625° 

Height 𝐻 1600 mm 

Number of points on each circle 𝑁𝑎 64 

Number of circle 𝑁ℎ 161 

Distance between circles 𝐷𝑐 10 mm 

Reference Radius 𝑟0 70 mm 

 

Assume the mapped volume is a height 1000 mm and 

radius 70 mm cylindrical volume in the center of ECRIS 

magnet. The measurement points using the PCL 

arrangement method have been shown in Fig. 5, and the 

parameters of the PCL arrangement method are listed in 

Table III. 

Using to the PCL arrangement method, the 

components of magnetic flux density at the measurement 

points in the center of the ECRIS magnet can be obtained. 

According to the DFT, the maximum value of 𝑛 in (2), 

(3), and (4) can be calculated by 𝑁𝑎/2. Considering 

ECRIS magnet has a six-fold symmetry, the components 

of the Fourier series have greater values when 𝑛 is 3, 9, 

15, and so on. In the mapping procedure, the components 

of the Fourier series, which magnitude is too small, can 

be neglected. 

 
Fig. 6. Absolute error in the calculation of 𝐵𝜌3 changes 

with the value of 𝐿3. 

 

 
Fig. 7. Terms in the calculation of component 𝐵𝜌3. 

 

 
Fig. 8. Maximum magnitude of terms in the calculation 

of component 𝐵𝜌3. 

 

The value of 𝐿𝑛  can be optimized by the 

measurement data. Illustrated by the case of 𝑛 = 3 term 

in the component 𝐵𝜌, the error in the mapping procedure 

has been calculated as shown in Fig. 6. When 𝐿3  is 

150 mm, the error in the calculation can get a minimum 

value. 

According to (12), the component 𝐵𝜌3  can be 

calculated by the sum of high order derivatives of 

Lorentzian curves. The magnitudes of the terms in (12) 

will reduce with the increasing of 𝑚 as shown in Fig. 7 

and the maximum value in each 𝑚 have been plotted in 

Fig. 8. When 𝑚 is up to 10, the absolute error in the 

calculation of 𝐵𝜌3 will less than 0.01 Gauss. 
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Once all of sin 𝑛𝜑  and cos 𝑛𝜑  terms in the 

component 𝐵𝜌  have been obtained, using (2), the 

component 𝐵𝜌 at any point in the mapped volume can 

be calculated. In the same way, the components 𝐵𝜑 and 

𝐵𝑧 in the volume can be obtained. The absolute errors in 

the components 𝐵𝜌 , 𝐵𝜑 , and 𝐵𝑧  have been shown in 

Fig. 9. The mapping result of 𝐵𝑧  is worse than the 

others, however, the absolute error in the mapping result 

is almost less than 0.1 Gauss. Considering the range of 

field strength instrument using the Hall effect is from 

0.1 mT to 3×104 mT, the mapping result is acceptable. 

Using the HCL arrangement method introduced in the 

reference [7-8], the absolute errors of each components 

in the mapped volume have been shown in Fig. 10. 

Compared with the mapping result using the HCL 

arrangement method, the radial component 𝐵𝜌 and the 

azimuthal components 𝐵𝜑  mapped using the PCL 

arrangement method are better than the mapping results 

using the HCL arrangement method. And the mapping 

result using the HCL arrangement method becomes 

worse at the both end of the mapped volume. 

The distribution of the components of the magnetic 

field in the partial of the mapped volume have been 

shown in Fig. 11. 

 

 
 

Fig. 9. Absolute error in the components of magnetic flux 

density mapping in the ECRIS magnet using PCL 

method. 

 

 
 

Fig. 10. Absolute error in the magnetic flux density 

mapping in the ECRIS magnet using HCL method. 

  
 

 
 

 
 

Fig. 11. The distribution of the components in the 

magnetic flux density in the center of ECRIS magnet 

with radius = 70 mm. (a) the component 𝐵𝜑  (b) the 

component 𝐵𝜌 (c) the component 𝐵𝑧. 

 

3.2. Quadrupole Magnet 

Quadrupole magnet is useful in the particle beam 

focusing because the magnitude of the magnetic field 

generated by the quadrupole magnet grows rapidly with 

the radial distance from the longitudinal axis. In the case 

study, the quadrupole magnet is simulated by four 

identity current loops as shown in Fig. 12 and the 

parameters of these current loops are listed in Table IV. 

Assume the mapped volume is a height 1000 mm and 

radius 170 mm cylindrical volume in the center of the 

quadrupole magnet. The measurement points using the 

PCL arrangement method have been shown in Fig. 13, 

and the parameters of the PCL arrangement method are 

listed in Table V. 
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Fig. 12. Four identical current loops for the simulation of 

the quadrupole magnet (in order to show four loops, 

there are some gaps between them). 

 
TABLE IV 

PARAMETERS OF CURRENT LOOPS FOR QUADRUPOLE MAGNET. 

Description Value 

Height 500 mm 

Length 500 mm 

Distance between opposite loops 500 mm 

Operating current 300 kA 

 

 
 

Fig. 13. The position of the measurement points and the 

mapped volume in the quadrupole magnet 

 
TABLE V 

PARAMETERS OF PCL METHOD FOR MAPPING 

Description Symbol Value 

Radius 𝑅 170 mm 

Azimuthal Angle 𝜑 10° 

Height 𝐻 1600 mm 

Number of points on each circle 𝑁𝑎 36 

Number of circle 𝑁ℎ 161 

Distance between circles 𝐷𝑐 10 mm 

Reference Radius 𝑟0 170 mm 

 
 

Fig. 14. The uniformity in the quadrupole magnet on the 

surface of the cylinder with 130 mm radius 

 

In the center of the quadrupole magnet, the 

components of the magnetic field is a four-fold symmetry. 

The components of the Fourier series have greater values 

when 𝑛 is 2, 6, 10, and so on. Define the uniformity of 

the field in the quadrupole magnet is 

 

%100
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where 𝐵𝜌6(𝑧) and 𝐵𝜌2(𝑧) are the 𝑛 = 6 term and the 

𝑛 = 2  term in the Fourier series with respect to 𝑧 , 

respectively. 

According to the mapping result and the calculation 

result, the uniformity on the radius 130 mm can be 

obtained as shown in Fig. 14. The uniformity from the 

mapping results is almost same as the uniformity from 

the calculation results from the simulation. 

The mapping error is checked by the difference 

between the mapping result and the simulation result. 

The maximum absolute error on the surface of circle with 

respect to 𝑧 have been plotted in Fig. 15. Compared 

with the mapping error using the Fourier transform 

method introduced in the reference [3], the PCL 

arrangement method can obtain a more accurate mapping 

result as shown in Fig. 16. 

 

 
 

Fig. 15. Absolute error in the components of magnetic 

flux density mapping in the quadrupole magnet using the 

PCL arrangement method. 

35



 
Study on magnetic field mapping within cylindrical center volume of general magnet 

 

 

 
 

Fig. 16. The mapping error using the method from the 

reference [3]. 

 

 

4. CONCLUSION 

 

Using the solution of the Laplace’s equation in the 

cylindrical coordinate system, a PCL arrangement 

method is applied to map the magnetic field within the 

center volume of magnet. The method is suitable for the 

magnetic field mapping in a cylindrical volume, and can 

be widely applied in the field mapping generated by 

various types of magnet. The magnetic field mapping in 

the ECRIS magnet and the quadrupole magnet have 

shown that the PCL arrangement method is feasible and 

convenient. 
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