• Title/Summary/Keyword: Lap splice length

Search Result 70, Processing Time 0.024 seconds

Comparative study of factors influencing tension lap splices in reinforced concrete beams

  • Karkarna, Yakubu M.;Bahadori-Jahromi, Ali;Jahromi, Hamid Zolghadr;Bonner, Emily;Goodchild, Charles
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.279-287
    • /
    • 2020
  • The practice of splicing reinforcing bars in reinforced concrete structures to manage insufficient bar length is a common approach, which is mainly due to transportation limitations on bar length. The splicing of reinforcing bars side by side offers a simple and economical solution to the problem of continuity. This paper examines the influence of different structural parameters such as concrete cover, lap splice length, shear links confinement and concrete strength on the lap splices based on an extensive experimental database of laps and anchorage. The current study shows that increasing the lap splices beyond 50Ø has no additional benefit for increasing its strength. The results also show that relative to the measured stress, specimens with larger concrete side covers shows higher splice stress compared to the samples with smaller concrete covers.

Behavior and Capacity of Compression Lap Splice in Confined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 있는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.389-400
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement and bar size on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. The results of the tests with bar diameters of 22 and 29 mm show that there is no size effect of bar diameter on compression lap splice. Bond strength of small bar diameter may increase. However, large diameters of re-bars are used in compression member and the size effect of re-bars does not have to be considered in compression lap splice. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond. Because the stresses developed by bond in compression splice with transverse reinforcement are nearly identical to or less than those in tension splice with same transverse reinforcement, strength increment of compression splice is attributed to end bearing only.

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

An Experimental Study on the Flexural Strength of Lap Spliced Ultra High Strength Fiber Reinforced Concrete Beams (이음된 초고강도 강섬유보강콘크리트 보의 휨강도에 관한 실험적 연구)

  • Bae, Baek-Il;Son, Dong-Hee;Choi, Hyun-Ki;Jung, Hyung-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.76-83
    • /
    • 2021
  • This study examines the bending behavior of lap-spliced ultra-high-strength fiber-reinforced concrete members and evaluates the safety of the design codes for ultra-high-strength fiber-reinforced concrete structures. An experiment on a total of six beams was performed. The main variables were the fiber-inclusion and the lap-spliced length at the center of the beams. The steel fibers in a volume fraction of 2% were used, and the lap-splice lengths were determined to be 8db and 16db. As a result of the test, the specimens not reinforced with fiber lost abrupt load-bearing capacity at the lap region and did not experience yielding of the reinforcing bar. In the case of fiber-reinforced concrete, if a lap-splice length of 16db is secured, the yielding of the main reinforcing bar can be experienced, and appropriate flexural strength can be expressed. Based on the experimental results of this study, as a result of reviewing the lap-splice length calculation formulas of the current design standards and the ultra-high-strength concrete structural design recommendations, it was found that all of them were evaluated conservatively.

Comparison of the quantity estimations from the design phase and the settlement quantities of construction field to improve the extra rates of bar splice (철근 이음조정률의 개선을 위한 설계견적 수량과 현장시공 정산 수량의 비교분석 연구)

  • Kim, Sang-Yeon;Choi, Bo-Mi
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • LH has been using ultra high strength reinforcing bars (SD500 and SD600), since 2011. Such a change requires an adjustment of the old extra rates of bar splice to reflect use of ultra high strength reinforcing bars, as these rates had been set based on SD400 bars. It is particularly difficult to calculate precisely rebar lap-splice locations for large areas, such as those in apartment buildings. This research aims to adjust the extra rates of bar splice to reflect a reasonable rate; the rebar lap-splice length is not an exact estimation, but instead, an extra rates of bar splice is set and the rebar lap-splice length is increased by 2% (D 10) - 7% (025) depending on the bar size. The subjects of this study are LH apartments undergoing frame construction. We studied the quantity estimations from the design drawings, and analyzed the settlement quantities of construction field. The results of the study revealed that, when each of the quantities are analyzed, consider adjusting the extra rates of bar splice of some rebar to 1% - 3.5%. This was caused by an overuse of reinforcing bars in onsite construction and the use of supporting bars that have not been reflected in the documents, among other reasons. Based on the results of our study, an improvement plan for the current extra rates of bar splice seems to be necessary, cutting or raising the rate depending on the analysis of the data. Through this study, we expect to contribute to the calculation of reasonable construction costs, improvements in the quality of rebar work, and improvements in the capacity of design techniques for apartment buildings.

Experimental Study on Effect of Confinement Details for Lap Splice of Headed Deformed Reinforcing Bars in Grade SD400 and SD500 (구속상세가 SD400 및 SD500 확대머리 이형철근의 겹침이음에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • KCI 2012 and ACI318-11 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. In ACI318-11, the confinement factor, such as transverse reinforcement factor, is not used to calculate the development length of headed bars. The purpose of this experimental study is to evaluate the effect of confinement details to the lap splice performance of headed deformed reinforcing bars in grade SD400 and SD500. The confinement details are stirrups and tie-down bars in lap zone. Test results showed that specimens with only stirrups had the brittle failure and could not increase lap strengths, and that specimens with composite confinements by stirrups and tie-down bars had the flexural strengths over than nominal flexural strengths. Stirrups with tie-down bars can have an effect on improvement in lap splice of headed bars in grade SD400 and SD500.

An Experimental Study on the Behavior of Reinforced Concrete Multi-Column Piers with Different Longitudinal and Transverse Reinforcement Details (주철근 겹침이음 및 횡철근 상세에 따른 철근콘크리트 다주교각의 거동특성에 관한 실험적 연구)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.211-219
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that the ductility of the model in transverse direction is rather higher than in longitudinal direction because of formation of several plastic hinges and that the ultimate displacement and the energy absorbtion capacity are enhanced by using continuous longitudinal bars instead of lap-splice ones. And it is confirmed that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier.

  • PDF

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.