• 제목/요약/키워드: Language Model (LM)

검색결과 13건 처리시간 0.021초

워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구 (Class Language Model based on Word Embedding and POS Tagging)

  • 정의석;박전규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.315-319
    • /
    • 2016
  • 음성인식 성능 개선을 위한 언어모델의 기술적 진보는 최근 심층 신경망을 기반으로 한 접근방법으로 한 단계 더 진보한 모양새다. 그러나 연구되고 있는 심층 신경망 기반 언어모델은 대부분 음성인식 이후 리스코링 단계에서 적용할 수 있는 한계를 지닌다. 또한 대규모 어휘에 대한 심층 신경망 접근방법은 아직 시간이 필요하다고 본다. 따라서 본 논문은 심층 신경망 언어 모델의 단순화된 형태인 워드 임베딩 기술을 음성인식 후처리가 아닌 기반 N-gram모델에 바로 적용할 수 있는 접근 방법을 찾는다. 클래스 언어모델이 한 접근 방법이 될 수 있는데, 본 연구에서는 워드 임베딩을 우선 구축하고, 해당 어휘별 벡터 정보를 클러스터링하여 클래스 언어모델을 구축 방법을 제시한다. 이를 기존 어휘기반 N-gram 모델에 통합한 후, 언어모델의 성능 개선 여부를 확인한다. 클래스 언어모델의 타당성 검증을 위해 다양한 클래스 개수의 언어모델 실험과 RNN LM과의 비교 결과를 검토한 후, 모든 언어모델의 성능 개선을 보장하는 품사 부착 언어모델 생성 방법을 제안한다.

Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation

  • Jeon, Hyung-Bae;Lee, Soo-Young
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.487-493
    • /
    • 2016
  • Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.

방송 뉴스 인식을 위한 언어 모델 적응 (Language Model Adaptation for Broadcast News Recognition)

  • 김현숙;전형배;김상훈;최준기;윤승
    • 대한음성학회지:말소리
    • /
    • 제51호
    • /
    • pp.99-115
    • /
    • 2004
  • In this parer, we propose LM adaptation for broadcast news recognition. We collect information of recent articles from the internet on real time, make a recent small size LM, and then interpolate recent LM with a existing LM composed of existing large broadcast news corpus. We performed interpolation experiments to get the best type of articles from recent corpus because collected recent corpus is composed of articles which are related with test set, and which are unrelated. When we made an adapted LM using recent LM with similar articles to test set through Tf-Idf method and existing LM, we got the best result that ERR of pseudo-morpheme based recognition performance has 17.2 % improvement and the number of OOV has reduction from 70 to 27.

  • PDF

FubaoLM : 연쇄적 사고 증류와 앙상블 학습에 의한 대규모 언어 모델 자동 평가 (FubaoLM : Automatic Evaluation based on Chain-of-Thought Distillation with Ensemble Learning)

  • 김희주;전동현;권오준;권순환;김한수;이인권;김도현;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.448-453
    • /
    • 2023
  • 대규모 언어 모델 (Large Language Model, LLM)을 인간의 선호도 관점에서 평가하는 것은 기존의 벤치마크 평가와는 다른 도전적인 과제이다. 이를 위해, 기존 연구들은 강력한 LLM을 평가자로 사용하여 접근하였지만, 높은 비용 문제가 부각되었다. 또한, 평가자로서 LLM이 사용하는 주관적인 점수 기준은 모호하여 평가 결과의 신뢰성을 저해하며, 단일 모델에 의한 평가 결과는 편향될 가능성이 있다. 본 논문에서는 엄격한 기준을 활용하여 편향되지 않은 평가를 수행할 수 있는 평가 프레임워크 및 평가자 모델 'FubaoLM'을 제안한다. 우리의 평가 프레임워크는 심층적인 평가 기준을 통해 다수의 강력한 한국어 LLM을 활용하여 연쇄적 사고(Chain-of-Thought) 기반 평가를 수행한다. 이러한 평가 결과를 다수결로 통합하여 편향되지 않은 평가 결과를 도출하며, 지시 조정 (instruction tuning)을 통해 FubaoLM은 다수의 LLM으로 부터 평가 지식을 증류받는다. 더 나아가 본 논문에서는 전문가 기반 평가 데이터셋을 구축하여 FubaoLM 효과성을 입증한다. 우리의 실험에서 앙상블된 FubaoLM은 GPT-3.5 대비 16% 에서 23% 향상된 절대 평가 성능을 가지며, 이항 평가에서 인간과 유사한 선호도 평가 결과를 도출한다. 이를 통해 FubaoLM은 비교적 적은 비용으로도 높은 신뢰성을 유지하며, 편향되지 않은 평가를 수행할 수 있음을 보인다.

  • PDF

Robustness of Differentiable Neural Computer Using Limited Retention Vector-based Memory Deallocation in Language Model

  • Lee, Donghyun;Park, Hosung;Seo, Soonshin;Son, Hyunsoo;Kim, Gyujin;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.837-852
    • /
    • 2021
  • Recurrent neural network (RNN) architectures have been used for language modeling (LM) tasks that require learning long-range word or character sequences. However, the RNN architecture is still suffered from unstable gradients on long-range sequences. To address the issue of long-range sequences, an attention mechanism has been used, showing state-of-the-art (SOTA) performance in all LM tasks. A differentiable neural computer (DNC) is a deep learning architecture using an attention mechanism. The DNC architecture is a neural network augmented with a content-addressable external memory. However, in the write operation, some information unrelated to the input word remains in memory. Moreover, DNCs have been found to perform poorly with low numbers of weight parameters. Therefore, we propose a robust memory deallocation method using a limited retention vector. The limited retention vector determines whether the network increases or decreases its usage of information in external memory according to a threshold. We experimentally evaluate the robustness of a DNC implementing the proposed approach according to the size of the controller and external memory on the enwik8 LM task. When we decreased the number of weight parameters by 32.47%, the proposed DNC showed a low bits-per-character (BPC) degradation of 4.30%, demonstrating the effectiveness of our approach in language modeling tasks.

정보검색에서의 언어모델 적용에 관한 분석 (An Analysis of the Applications of the Language Models for Information Retrieval)

  • 김희섭;정영미
    • 한국도서관정보학회지
    • /
    • 제36권2호
    • /
    • pp.49-68
    • /
    • 2005
  • 본 연구의 목적은 정보검색 분야에서의 언어모델의 적용에 관한 연구동향을 개관하고 이 분야의 선행연구 결과들을 분석해 보는 것이다. 선행연구들은 (1)전통적인 모델 기반 정보검색과 언어모델링 정보검색의 성능 비교 실험에 초점을 두고 있는 1세대 언어모델링 정보검색(LMIR)과 (2)기본적인 언어모델링 정보검색과 확장된 언어모델링 정보검색의 성능 비교를 통해 보다 우수한 언어모델링 확장기법을 찾아내는 것에 초점을 두고 있는 2세대 LMIR로 구분하여 분석하였다. 선행연구들의 실험결과를 분석해 본 결과 첫째, 언어모델링 정보검색은 확률모델, 벡터모델 정보검색보다 그 성능이 뛰어나고 둘째 확장된 언어모델들은 기본적인 언어 모델 정보검색보다 그 성능이 우수한 것으로 나타났다.

  • PDF

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.27-40
    • /
    • 2020
  • 본 논문은 장단기기억신경망(LSTM)이 영어를 배우면서 학습한 암묵적 통사 관계인 필러-갭 의존 관계를 조사하여 영어 문장 학습량과 한국인 영어 학습자(L2ers)의 문장 처리 패턴 간의 상관관계를 규명한다. 이를 위해, 먼저 장단기기억신경망 언어모델(LSTM LM)을 구축하였다. 이 모델은 L2ers가 영어 학습 과정에서 잠재적으로 배울 수 있는 L2 코퍼스의 영어 문장들로 심층학습을 하였다. 다음으로, 이 언어 모델을 이용하여 필러-갭 의존 관계 구조를 위반한 영어 문장을 대상으로 의문사 상호작용 효과(wh-licensing interaction effect) 즉, 정보 이론의 정보량인 놀라움(surprisal)의 정도를 계산하여 문장 처리 양상을 조사하였다. 또한 L2ers 언어모델과 상응하는 원어민 언어모델을 비교 분석함으로써, 두 언어모델이 문장 처리에서 필러-갭 의존 관계에 내재된 추상적 구문 구조를 추적할 수 있음을 보여주었을 뿐만 아니라, 또한 선형 혼합효과 회귀모델을 사용하여 본 논문의 중심 연구 주제인 의존 관계 처리에 있어서 원어민 언어모델과 L2ers 언어모델간 통계적으로 유의미한 차이가 존재함을 규명하였다.

증거와 Claim의 LM Perplexity를 이용한 Zero-shot 사실 검증 (Zero-Shot Fact Verification using Language Models Perplexities of Evidence and Claim)

  • 박은환;나승훈;신동욱;전동현;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.524-527
    • /
    • 2021
  • 최근 국외에서 사실 검증 연구가 활발하게 이루어지고 있지만 한국어의 경우 데이터 집합의 부재로 인하여 사실 검증 연구가 이루어지는데 큰 어려움을 겪고 있다. 이러한 어려움을 해소하고자 자동 생성 모델을 통하여 데이터 집합을 생성하는 시도도 있으나 생성 모델의 특성 상 부정확한 데이터가 생성되어 사실 검증 연구의 퀄리티를 떨어뜨린다는 문제점이 있다. 이러한 문제점을 해소하기 위해 수동으로 구축한 100건의 데이터 집합으로 최근에 이루어진 퓨-샷(Few-Shot) 사실 검증을 확장한 학습이 필요없는 제로-샷(Zero-Shot) 질의 응답에 대한 사실 검증 연구를 제안한다.

  • PDF

언어 모델 네트워크에 기반한 대어휘 연속 음성 인식 (Large Vocabulary Continuous Speech Recognition Based on Language Model Network)

  • 안동훈;정민화
    • 한국음향학회지
    • /
    • 제21권6호
    • /
    • pp.543-551
    • /
    • 2002
  • 이 논문에서는 20,000 단어급의 대어휘를 대상으로 실시간 연속음성 인식을 수행할 수 있는 탐색 방법을 제안한다. 기본적인 탐색 방법은 토큰 전파 방식의 비터비 (Viterbi) 디코딩 알고리듬을 이용한 1 패스로 구성된다. 언어 모델 네트워크를 도입하여 다양한 언어 모델들을 일관된 탐색 공간으로 구성하도록 하였으며, 프루닝(pruning) 단계에서 살아남은 토큰들로부터 동적으로 탐색 공간을 재구성하였다. 용이한 후처리를 위해 워드그래프 및 N개의 최적 문장을 출력할 수 있도록 비터비 알고리듬을 수정하였다. 이렇게 구성된 디코더는 20,000 단어급 데이터 베이스에 대해 테스트하였으며 인식률 및 RTF측면에서 평가되었다.

Evaluating the Impact of Training Conditions on the Performance of GPT-2-Small Based Korean-English Bilingual Models

  • Euhee Kim;Keonwoo Koo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.69-77
    • /
    • 2024
  • 본 연구는 GPT-2-Small 버전 모델을 사용하여 한국어와 영어를 학습하는 이중 언어 모델의 성능을 평가하고, 다양한 학습 조건이 모델 성능에 미치는 영향을 분석하였다. 연구 방법으로 단일 언어 학습, 순차 학습, 순차-교차 학습, 순차-EWC 학습의 네 가지 조건을 설정하여 모델을 훈련하였다. 국립국어원 말뭉치와 영어 위키피디어 말뭉치를 사용하고, PPL과 BLiMP 지표를 통해 성능을 측정하였다. 연구결과, 단일 언어 학습 조건에서 PPL 값은 16.2, BLiMP 정확도는 73.7%로 가장 우수한 성능을 보였다. 반면, 순차-EWC 학습 조건에서는 PPL 값이 41.9로 가장 높았고, BLiMP 정확도는 66.3%로 가장 낮았다(p < 0.05). 단일 언어 학습이 이중 언어 모델 성능 최적화에 가장 효과적임을 확인하였다. 이는 결정적 시기 이론에 따라 모델이 단일 언어에 최적화될 때 더 나은 성능을 보인다는 것을 의미한다. 또한, 프로그래밍 가소성을 조절하는 EWC 정규화를 적용한 지속 학습 조건에서는 성능 저하가 두드러졌는데, 이는 정규화가 가중치 업데이트를 제한하여 새로운 언어 학습 능력을 저하시켰다는 것을 의미한다. 본 연구는 언어 모델링에 대한 이해를 높이고, AI 언어 학습에서 인지적 유사성을 개선하는 데 기여한다.