음성인식 성능 개선을 위한 언어모델의 기술적 진보는 최근 심층 신경망을 기반으로 한 접근방법으로 한 단계 더 진보한 모양새다. 그러나 연구되고 있는 심층 신경망 기반 언어모델은 대부분 음성인식 이후 리스코링 단계에서 적용할 수 있는 한계를 지닌다. 또한 대규모 어휘에 대한 심층 신경망 접근방법은 아직 시간이 필요하다고 본다. 따라서 본 논문은 심층 신경망 언어 모델의 단순화된 형태인 워드 임베딩 기술을 음성인식 후처리가 아닌 기반 N-gram모델에 바로 적용할 수 있는 접근 방법을 찾는다. 클래스 언어모델이 한 접근 방법이 될 수 있는데, 본 연구에서는 워드 임베딩을 우선 구축하고, 해당 어휘별 벡터 정보를 클러스터링하여 클래스 언어모델을 구축 방법을 제시한다. 이를 기존 어휘기반 N-gram 모델에 통합한 후, 언어모델의 성능 개선 여부를 확인한다. 클래스 언어모델의 타당성 검증을 위해 다양한 클래스 개수의 언어모델 실험과 RNN LM과의 비교 결과를 검토한 후, 모든 언어모델의 성능 개선을 보장하는 품사 부착 언어모델 생성 방법을 제안한다.
Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.
In this parer, we propose LM adaptation for broadcast news recognition. We collect information of recent articles from the internet on real time, make a recent small size LM, and then interpolate recent LM with a existing LM composed of existing large broadcast news corpus. We performed interpolation experiments to get the best type of articles from recent corpus because collected recent corpus is composed of articles which are related with test set, and which are unrelated. When we made an adapted LM using recent LM with similar articles to test set through Tf-Idf method and existing LM, we got the best result that ERR of pseudo-morpheme based recognition performance has 17.2 % improvement and the number of OOV has reduction from 70 to 27.
대규모 언어 모델 (Large Language Model, LLM)을 인간의 선호도 관점에서 평가하는 것은 기존의 벤치마크 평가와는 다른 도전적인 과제이다. 이를 위해, 기존 연구들은 강력한 LLM을 평가자로 사용하여 접근하였지만, 높은 비용 문제가 부각되었다. 또한, 평가자로서 LLM이 사용하는 주관적인 점수 기준은 모호하여 평가 결과의 신뢰성을 저해하며, 단일 모델에 의한 평가 결과는 편향될 가능성이 있다. 본 논문에서는 엄격한 기준을 활용하여 편향되지 않은 평가를 수행할 수 있는 평가 프레임워크 및 평가자 모델 'FubaoLM'을 제안한다. 우리의 평가 프레임워크는 심층적인 평가 기준을 통해 다수의 강력한 한국어 LLM을 활용하여 연쇄적 사고(Chain-of-Thought) 기반 평가를 수행한다. 이러한 평가 결과를 다수결로 통합하여 편향되지 않은 평가 결과를 도출하며, 지시 조정 (instruction tuning)을 통해 FubaoLM은 다수의 LLM으로 부터 평가 지식을 증류받는다. 더 나아가 본 논문에서는 전문가 기반 평가 데이터셋을 구축하여 FubaoLM 효과성을 입증한다. 우리의 실험에서 앙상블된 FubaoLM은 GPT-3.5 대비 16% 에서 23% 향상된 절대 평가 성능을 가지며, 이항 평가에서 인간과 유사한 선호도 평가 결과를 도출한다. 이를 통해 FubaoLM은 비교적 적은 비용으로도 높은 신뢰성을 유지하며, 편향되지 않은 평가를 수행할 수 있음을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.837-852
/
2021
Recurrent neural network (RNN) architectures have been used for language modeling (LM) tasks that require learning long-range word or character sequences. However, the RNN architecture is still suffered from unstable gradients on long-range sequences. To address the issue of long-range sequences, an attention mechanism has been used, showing state-of-the-art (SOTA) performance in all LM tasks. A differentiable neural computer (DNC) is a deep learning architecture using an attention mechanism. The DNC architecture is a neural network augmented with a content-addressable external memory. However, in the write operation, some information unrelated to the input word remains in memory. Moreover, DNCs have been found to perform poorly with low numbers of weight parameters. Therefore, we propose a robust memory deallocation method using a limited retention vector. The limited retention vector determines whether the network increases or decreases its usage of information in external memory according to a threshold. We experimentally evaluate the robustness of a DNC implementing the proposed approach according to the size of the controller and external memory on the enwik8 LM task. When we decreased the number of weight parameters by 32.47%, the proposed DNC showed a low bits-per-character (BPC) degradation of 4.30%, demonstrating the effectiveness of our approach in language modeling tasks.
본 연구의 목적은 정보검색 분야에서의 언어모델의 적용에 관한 연구동향을 개관하고 이 분야의 선행연구 결과들을 분석해 보는 것이다. 선행연구들은 (1)전통적인 모델 기반 정보검색과 언어모델링 정보검색의 성능 비교 실험에 초점을 두고 있는 1세대 언어모델링 정보검색(LMIR)과 (2)기본적인 언어모델링 정보검색과 확장된 언어모델링 정보검색의 성능 비교를 통해 보다 우수한 언어모델링 확장기법을 찾아내는 것에 초점을 두고 있는 2세대 LMIR로 구분하여 분석하였다. 선행연구들의 실험결과를 분석해 본 결과 첫째, 언어모델링 정보검색은 확률모델, 벡터모델 정보검색보다 그 성능이 뛰어나고 둘째 확장된 언어모델들은 기본적인 언어 모델 정보검색보다 그 성능이 우수한 것으로 나타났다.
본 논문은 장단기기억신경망(LSTM)이 영어를 배우면서 학습한 암묵적 통사 관계인 필러-갭 의존 관계를 조사하여 영어 문장 학습량과 한국인 영어 학습자(L2ers)의 문장 처리 패턴 간의 상관관계를 규명한다. 이를 위해, 먼저 장단기기억신경망 언어모델(LSTM LM)을 구축하였다. 이 모델은 L2ers가 영어 학습 과정에서 잠재적으로 배울 수 있는 L2 코퍼스의 영어 문장들로 심층학습을 하였다. 다음으로, 이 언어 모델을 이용하여 필러-갭 의존 관계 구조를 위반한 영어 문장을 대상으로 의문사 상호작용 효과(wh-licensing interaction effect) 즉, 정보 이론의 정보량인 놀라움(surprisal)의 정도를 계산하여 문장 처리 양상을 조사하였다. 또한 L2ers 언어모델과 상응하는 원어민 언어모델을 비교 분석함으로써, 두 언어모델이 문장 처리에서 필러-갭 의존 관계에 내재된 추상적 구문 구조를 추적할 수 있음을 보여주었을 뿐만 아니라, 또한 선형 혼합효과 회귀모델을 사용하여 본 논문의 중심 연구 주제인 의존 관계 처리에 있어서 원어민 언어모델과 L2ers 언어모델간 통계적으로 유의미한 차이가 존재함을 규명하였다.
최근 국외에서 사실 검증 연구가 활발하게 이루어지고 있지만 한국어의 경우 데이터 집합의 부재로 인하여 사실 검증 연구가 이루어지는데 큰 어려움을 겪고 있다. 이러한 어려움을 해소하고자 자동 생성 모델을 통하여 데이터 집합을 생성하는 시도도 있으나 생성 모델의 특성 상 부정확한 데이터가 생성되어 사실 검증 연구의 퀄리티를 떨어뜨린다는 문제점이 있다. 이러한 문제점을 해소하기 위해 수동으로 구축한 100건의 데이터 집합으로 최근에 이루어진 퓨-샷(Few-Shot) 사실 검증을 확장한 학습이 필요없는 제로-샷(Zero-Shot) 질의 응답에 대한 사실 검증 연구를 제안한다.
이 논문에서는 20,000 단어급의 대어휘를 대상으로 실시간 연속음성 인식을 수행할 수 있는 탐색 방법을 제안한다. 기본적인 탐색 방법은 토큰 전파 방식의 비터비 (Viterbi) 디코딩 알고리듬을 이용한 1 패스로 구성된다. 언어 모델 네트워크를 도입하여 다양한 언어 모델들을 일관된 탐색 공간으로 구성하도록 하였으며, 프루닝(pruning) 단계에서 살아남은 토큰들로부터 동적으로 탐색 공간을 재구성하였다. 용이한 후처리를 위해 워드그래프 및 N개의 최적 문장을 출력할 수 있도록 비터비 알고리듬을 수정하였다. 이렇게 구성된 디코더는 20,000 단어급 데이터 베이스에 대해 테스트하였으며 인식률 및 RTF측면에서 평가되었다.
본 연구는 GPT-2-Small 버전 모델을 사용하여 한국어와 영어를 학습하는 이중 언어 모델의 성능을 평가하고, 다양한 학습 조건이 모델 성능에 미치는 영향을 분석하였다. 연구 방법으로 단일 언어 학습, 순차 학습, 순차-교차 학습, 순차-EWC 학습의 네 가지 조건을 설정하여 모델을 훈련하였다. 국립국어원 말뭉치와 영어 위키피디어 말뭉치를 사용하고, PPL과 BLiMP 지표를 통해 성능을 측정하였다. 연구결과, 단일 언어 학습 조건에서 PPL 값은 16.2, BLiMP 정확도는 73.7%로 가장 우수한 성능을 보였다. 반면, 순차-EWC 학습 조건에서는 PPL 값이 41.9로 가장 높았고, BLiMP 정확도는 66.3%로 가장 낮았다(p < 0.05). 단일 언어 학습이 이중 언어 모델 성능 최적화에 가장 효과적임을 확인하였다. 이는 결정적 시기 이론에 따라 모델이 단일 언어에 최적화될 때 더 나은 성능을 보인다는 것을 의미한다. 또한, 프로그래밍 가소성을 조절하는 EWC 정규화를 적용한 지속 학습 조건에서는 성능 저하가 두드러졌는데, 이는 정규화가 가중치 업데이트를 제한하여 새로운 언어 학습 능력을 저하시켰다는 것을 의미한다. 본 연구는 언어 모델링에 대한 이해를 높이고, AI 언어 학습에서 인지적 유사성을 개선하는 데 기여한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.