
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 25 No. 11, pp. 27-40, November 2020

https://doi.org/10.9708/jksci.2020.25.11.027

The Ability of L2 LSTM Language Models to Learn the

Filler-Gap Dependency

1)Euhee Kim*

*Professor, Dept. of Computer Science & Engineering, Shinhan University, Gyeonggi-do, Korea

[Abstract]

In this paper, we investigate the correlation between the amount of English sentences that Korean

English learners (L2ers) are exposed to and their sentence processing patterns by examining what Long

Short-Term Memory (LSTM) language models (LMs) can learn about implicit syntactic relationship: that

is, the filler–gap dependency. The filler–gap dependency refers to a relationship between a (wh-)filler,

which is a wh-phrase like ‘what’ or ‘who’ overtly in clause-peripheral position, and its gap in

clause-internal position, which is an invisible, empty syntactic position to be filled by the (wh-)filler for

proper interpretation. Here to implement L2ers’ English learning, we build LSTM LMs that in turn

learn a subset of the known restrictions on the filler-gap dependency from English sentences in the L2

corpus that L2ers can potentially encounter in their English learning. Examining LSTM LMs’ behaviors

on controlled sentences designed with the filler-gap dependency, we show the characteristics of L2ers'

sentence processing using the information-theoretic metric of surprisal that quantifies violations of the

filler-gap dependency or wh-licensing interaction effects. Furthermore, comparing L2ers’ LMs with

native speakers’ LM in light of processing the filler-gap dependency, we not only note that in their

sentence processing both L2ers’ LM and native speakers’ LM can track abstract syntactic structures

involved in the filler-gap dependency, but also show using linear mixed-effects regression models that

there exist significant differences between them in processing such a dependency.

▸Key words: LSTM language model, English sentence processing, filler-gap dependency, surprisal,

linear mixed-effects regression model, wh-licensing interaction effects

∙First Author: Euhee Kim, Corresponding Author: Euhee Kim
 *Euhee Kim (euhkim@shinhan.ac.kr), Dept. of Computer Science & Engineering, Shinhan University
∙Received: 2020. 10. 06, Revised: 2020. 11. 11, Accepted: 2020. 11. 14.

Copyright ⓒ 2020 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

28 Journal of The Korea Society of Computer and Information

[요 약]

본 논문은 장단기기억신경망(LSTM)이 영어를 배우면서 학습한 암묵적 통사 관계인 필러-갭 의

존 관계를 조사하여 영어 문장 학습량과 한국인 영어 학습자(L2ers)의 문장 처리 패턴 간의 상관

관계를 규명한다. 이를 위해, 먼저 장단기기억신경망 언어모델(LSTM LM)을 구축하였다. 이 모델

은 L2ers가 영어 학습 과정에서 잠재적으로 배울 수 있는 L2 코퍼스의 영어 문장들로 심층학습을

하였다. 다음으로, 이 언어 모델을 이용하여 필러-갭 의존 관계 구조를 위반한 영어 문장을 대상

으로 의문사 상호작용 효과(wh-licensing interaction effect) 즉, 정보 이론의 정보량인 놀라움

(surprisal)의 정도를 계산하여 문장 처리 양상을 조사하였다. 또한 L2ers 언어모델과 상응하는 원어

민 언어모델을 비교 분석함으로써, 두 언어모델이 문장 처리에서 필러-갭 의존 관계에 내재된 추

상적 구문 구조를 추적할 수 있음을 보여주었을 뿐만 아니라, 또한 선형 혼합효과 회귀모델을 사

용하여 본 논문의 중심 연구 주제인 의존 관계 처리에 있어서 원어민 언어모델과 L2ers 언어모델

간 통계적으로 유의미한 차이가 존재함을 규명하였다.

▸주제어: 장단기기억신경망 언어모델, 영어 문장처리, 필러-갭 의존관계, 놀라움, 선형 혼합효과 회귀모델,

의문사 상호작용효과

I. Introduction

The language model (LM) based on an algorithm

like Recurrent Neural Network (RNN), which is

rapidly developing in the field of recent Natural

Language Processing (NLP) tasks, conceptually

correspond to a language acquisition device that

has frequently been mentioned in the literature on

the language acquisition and learning theory in

the generative grammar research. That is, by

applying theory and practice, particularly through

the development of an LM that models the

sentence processing of Korean English learners

(or L2ers) and the analysis for the results of its

performances, we conduct an integrated

computational psycholinguistic study of sentence

processing[1].

Sentence processing, in which a sentence is the

smallest unit of information transfer in foreign

language use, is essential for understanding

foreign language learners' use of the language

they learn. Psycholinguistics has formulated

various principles that explain the generalizations

drawn from sentence processing.

The basic question we can ask is : When Korean

English learners process a specific sentence in

English, how does the processing pattern of this

sentence (that is, the pattern in which the

principles bearing on sentence processing are

applied) have a correlation with the accumulated

language learning experiences they have had? For

example, assuming that English sentence

processing is correlated with the learner's

language learning experience English sentences or

data, it is a question whether it can be verified

computationally.

In the field of computational psycholinguistics

that seeks to answer such a question, deep neural

network-based LMs that reproduce language

learning experiences and language processing

mechanisms of language learners can serve as an

excellent tool to investigate the language processing

patterns of foreign language learners[2].

In this paper, we aim to shed lights on such an

important issue related to learning English as a

foreign language by using neural LMs to

investigate how well deep neural network LMs

perform on particular types of controlled

sentences that indicate a representation of a

syntactic dependency. Specifically, we investigate

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency 29

the correlation between the amount of English

sentences that L2ers experience and their

sentence processing patterns by examining what

RNN LMs learn about implicit syntactic

relationship: that is, the filler–gap dependency.

When training an LM with L1 (native speaker) or

L2 (like Korean English leaner) English sentences

to model learners with different levels of English

knowledge, the number of learning (that is, epoch)

is also adjusted differently. Likewise, we also

modulate the size of training data for L1 and L2

LMs. Thereafter, it is possible to inspect the

correlation of the LMs’ performances with the

patterns of sentence processing collected for

human L2ers as well as L1ers.

To this aim, we are going to build an LM based

on the Long Short-Term Memory RNN (LSTM), an

algorithm grounded on deep learning neural

networks, which has been widely used to model

LMs in the NLP field. In essence, this study adopts

NLP's LM methodology, specifically to adapt and

implement the computational psycholinguistic

methodology. We thereby build a model that

reproduces English learners' language

experiences, by incorporating into it the learning

methods and sentence processing methods[3-4].

The remainder of the paper is structured as

follows. Section 2 reviews the relevant studies in

greater details. Section 3 gives a detailed overview

of the methods that are going to be employed in

the LMs to be built. Section 4 proposes the

LSTM-based language modelling system to

estimate the ability of the L1 and L2 LMs to learn

filler-gap dependency. Section 5 and 6 each

outlines the experiments performed and reports

the results of the experiments. Section 7 wraps

with a conclusion.

II. Related works

LSTMs have recently achieved impressive

results in large-scale tasks like language modeling

for speech recognition and machine translation,

as well as computational psycholinguistic modeling

of human language processing. This suggests that

LSTMs may learn to track grammatical structure

even when trained on comparatively noisy natural

language data[5-7].

Particularly, Linzen et al. evaluated the extent

to which RNNs can approximate hierarchical

structure in corpus-extracted natural language

data. They tested whether RNNs can learn to

predict English subject-verb agreement, a task

generally thought to require hierarchical

structure. They argued that the supervised

language modeling method is not sufficient for

RNNs to deploy the syntactic knowledge necessary

to cope with constructions where subject and verb

agreement occurs in a long-distance fashion, as in

(1a) and (1b): the symbol ‘**’ means that the given

sentence is ungrammatical[5].

(1a) The girl that the boys like is . . .

(1b) **The girl that the boys like are . . .

Gulordava et al. went on to focus on the more

interesting unsupervised setup, where RNNs are

trained to perform large-scale language modelling

with subject-verb agreement. They demonstrated

that RNNs trained with an LM objective can solve

the long-distance agreement problem. Moreover,

the performance of RNNs on language modeling

(measured in terms of perplexity) is a good

predictor of long-distance agreement accuracy.

This suggests that the ability to capture structural

generalizations is an important aspect of what

makes the best RNN architectures excel in language

modeling. Illustratively, like Linzen et al., they

focused on long-distance agreement, where an

arbitrary number of words can occur between the

elements that engage in the subject-verb agreement

relation. They concentrated on number (plural or

singular) agreement, as in (2a) and (2b)[6].

30 Journal of The Korea Society of Computer and Information

(2a) The girl (that) [you met yesterday] thinks. . .

(2b) **The girl (that) [you met yesterday through

her friends] thinks. . .

Meanwhile, Wilcox et al. investigated whether

RNNs can learn English long-distance filler-gap

dependency and constraints on it. In sentence

(3a), the (wh-)filler is ‘what’ in clause-edge

position, and the gap is placed after the transitive

verb ‘devoured’, the gap position being indicated

with an underline. If the filler were not present,

the gap would be ungrammatical, as in (3b)[7].

(3a) I know what the lion devoured _________ at

 sunrise.

(3b) **I know that the lion devoured __________

 at sunrise.

In this paper, following the lead by Wilcox et al.

but concentrating on not L1 but L2 LMs, we

investigate whether LSTM LMs built on the L2

corpus can truly learn filler-gap dependency.

To this aim, we examine the filler-gap effects at

the final gap position. As pointed out above, the

wh-filler gap dependency in L2ers is undoubtedly

an ideal test bed to identify the syntactic ability

that LSTM LMs come to entertain.

To anticipate the test data to evaluate the

syntactic ability of LSTM LMs, we use two sets of a

pair of conditions; (i) Long vs. Short condition and

(ii) VP vs. NP condition in Table 1. The difference

between the former Long and Short condition lies

in the presence/absence of the intermediate gap

immediately before the subordinator ‘that’, though

the two conditions differ in light of the distance

between the wh-filler and its gap, as (4a)-(4b).

On the other hand, the difference between the

latter VP and NP condition also lies in the

presence/absence of the intermediate gap right

before the subordinator ‘that’, but the two

conditions here are almost similar in light of the

distance between the wh-filler and its gap, as

(4c)-(4d).

Condition Definition

(4a) Long
wh-filler . . . intermediate gap ‘that’ .

. . final gap

(4b) Short wh-filler . . . final gap

(4c) VP
wh-filler . . . intermediate gap ‘that’ .

. . final gap

(4d) NP
wh-filler . . .

 . final gap

Table 1. Two sets of a pair of conditions

Following Wilcox et al., we are going to quantify

the improper filler-gap dependency effects using

the information-theoretic measure of surprisal (to

be defined below). Thus, in both (4a) vs. (4b) and

(4c) vs. (4d), we measured the surprisal on a

preposition right after the final gap, because the

preposition right after the final gap can reflect

both ‘no filler effect’ and ‘no gap effect’, which

amount to the improper filler-gap dependency

effects at issue.

III. Methods

1. LSTM Language Models

A language model is a statistical model that

assigns probabilities to words or sentences. We

typically try to predict the next word in a sentence

given all the previous words, often referred to as

“context”. For example, given the context “For

dinner I’m making_____”, what’s the probability

that the next word is “plans”? What’s the

probability that the next word is “pizza”? It is the

most likely that (pizza| For dinner I’m making) >

(plans| For dinner I’m making), where  stands

for the conditional probability.

In this paper, we used the best model with the

lowest perplexity for L1 language modelling, which

is the pre-existing LSTM LM trained on an L1

corpus of English sentences. The model generally

known as the Gulordava model was selected for its

previous success in learning the subject-verb

number agreement task. It was pre-trained on

about 90M word tokens of English Wikipedia by

Gulordava et al.[6].

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency 31

As pointed out above, we also designed two

LSTM language models on the two L2 corpora (to

be specified below) to model L2ers with different

levels of English knowledge by adapting the same

Gulordava model architecture, shown in Figure 1.

Fig. 1. LSTM network architecture for language modeling

As is now well known, the LSTM LM represents

a word-to-word prediction LM composed of

multiple layers: (1) Tokenize: splits input sentences

into words tokens (integers) based on white space

in sentences, and generates two symbols “<eos>”

and “<unk>”. This is not a layer for the LSTM

network but a mandatory step of converting words

into tokens; (2) Input Layer: tokenizes input

sentences like “have you called for help?” with an

extra unit that represents <eos>, that is, the end

of a sentence (eos); (3) Embedding Layer: converts

word tokens into embedding of specific size; (4)

LSTM Layer: is defined by hidden state dimension

and the number of layers; (5) Dropout Layer: is

used to prevent over-fitting during the learning

process; (6) Fully Connected Linear Layer: maps

the output of the final LSTM layer to a desired

output size; (7) Softmax Layer: turns all output

values in a probability distribution; (8) Output

Layer: The Softmax output from the previous time

step to the next time step is considered as the

final output of this network.

In Figure 1, word tokens (integers) from the

input layer are fed into the embedding layer and

then the two layers of LSTM cells. We define the

shape of the inputs using the batch size and

maximum-length of a sentence. The LSTM

network module is shown to be rolled over all the

time steps. Each input unit corresponds to one

word, making maximum input units fix

maximum-length words in the input sentence with

variable length.

The proposed LSTM networks, which are built

upon PyTorch, are refer to L2 model and L3

model to learn filler-gap dependencies for L2ers.

On the other hand, we used the pre-trained

Gulordava model for L1 model. We reported the

hyper-parameters and further model details,

which are used for LSTM LM implementation (to

be defined in section V).

The implementation of the L2 LM (built on

English textbooks for L2ers) and L3 LM (built on

EBS-CSAT English Prep Books as well as English

textbooks for L2ers) respectively consists of three

major phases such as sentence preprocessing, LM

training, and LM evaluating:

(1) The sentences preprocessing phase: To input

English sentences, first uppercase letters were

converted to lowercase letters, and only alphabet

letters was extracted by removing special

characters and symbols. As in Figure 2, the

function create_vocabulary took the cleaned

sentences as input and generated the Vocabulary

database for each model; after splitting each

sentence with symbol <eos> using a white space,

the Vocabulary database for each model included

unique lower case word tokens and special

symbols <eos> and <unk>.

Fig. 2. The English sentence preprocessing phase

32 Journal of The Korea Society of Computer and Information

The function create_corpus took the cleaned

sentences as input and generated the Corpus

database for each model; After having filtered

unknown words in sentences which do not belong

to the Vocabulary database with symbol <unk>

through the function filter, the Corpus database

came to consist of Train list, Valid list, and Test list.

(2) The LM training phase: Figure 3 shows the

deep training process of the LM based on the

LSTM network architecture shown in Figure 1. The

function get_batch took the Corpus database with

Train and Valid lists as input and generated the

targets and data (that is, inputs) encoded by

one-hot vectors.

These inputs were fed into the Embedding layer

which generated dense vectors. In the flow of the

Forward operation, for each time-step the LSTM

cell took both the embedding vectors and the

hidden state weights of the previous time-step and

returned the new hidden state weights as an

output. The outputs passed through the fully

Connected linear layer and the Softmax layer.

From the function evaluate_loss, the train/valid

loss was calculated by comparing them with the

targets using the loss function, that is,

CrossEntropyLoss. In the flow of the Backward

operation, Backpropagation was performed on the

loss function. Iterative learning of Forward and

Backward operations was performed in batch units

by adjusting learning rates. Finally, using Adam’s

optimizer, the optimized models for the two

models (that is, L2 and L3 LMs) were saved.

Fig. 3. The LSTM LM training phase

(3) The LSTM LM evaluating phase: The Figure 4

shows that the evaluating process of the LSTM

language model learned the filler-gap dependency

in question. The function get_batch took the

Corpus database with test sentences as input and

generated the targets and data encoded by

one-hot vectors.

Then, the three optimized pre-trained L1, L2, and

L3 models respectively was loaded. Each model took

these inputs and generated the outputs passed

through the Softmax layer. We used the Softmax

function to calculate the probability distribution

predicting the corresponding test words.

In addition, the loss value was calculated by

comparing the Softmax result value and the target

value through the CrossEntropy loss function, and

the surprisal for a word at issue was calculated by

the Softmax results.

Fig. 4. The LSTM LM evaluating phase

2. Perplexity for language model

Perplexity is an evaluation metric used to judge

how good a language model is. For example, if we

have a perplexity of 100, it means that whenever

the model is trying to guess the next word, the

model is as confused as if it had to pick between

100 words. Perplexity(ppl) is defined as follows:

  
 


      

 

where  is a trained language model,

       is a sequence of  words,

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency 33

      
  



 is the probability of

a sentence of words given by a product. The

logarithm is taken in base 2.

The following Table 2 shows the perplexity as in

the above formula (1) of each of the three LSTM

LMs (that is, L1, L2, and L3 models) on the valid set.

LSTM LM L1(Gulordava) L2 L3

ppl 52.1 46.26 47.40

Table 2. The perplexity of the three LSTM LMs

A caveat is in order. In previous work,

perplexity and grammatical judgment accuracy

have been reported to be partly dissociable[8-9].

3. Surprisal for information density

The measure of surprisal is widely used in

information-theoretic modelling of human

language. For example, consider the following

English sentence: “She went to the grocery shop

to buy some apples and ().” To fill in the

appropriate word for the blank (), we predict that

‘pears’ is a good continuation after ‘apples’, while

for instance ‘books’ is not. Language models

provide the following outputs: assigning a low

probability and hence a high surprisal value to the

word ‘books’, but assigning a high probability and

hence a low surprisal value to the word ‘pears’.

If we successively obtain a surprisal value for

each word of a sentence given the preceding

words, we get an information density profile of

that sentence. If a word is highly unexpected in

the sentence containing that word, it will lead to a

high surprisal value. It is known to correlate

directly with human sentence processing

difficulty[10-12].

For a certain word, surprisal is the negative

log-likelihood of this word given an LSTM’s hidden

state before taking it:

   log     

where for  of a sentence’s  word,   is

the LSTM’s hidden state before encountering .

We calculated surprisal values from the LSTM LMs

by directly computing the negative log of the

predicted conditional probability from the Softmax

layer in Figure 1.

In this paper, we investigated the LSTM LMs’

learning about wh-filler and gap dependency by

measuring the effects that the wh-filler has on the

gap. That is, we evaluated the surprisal value for

a word immediately following the gap when there

is a gap. We looked for the cases where the

surprisal value associated with an unusual

sentence containing a gap is reduced by the

presence of its wh-filler. Thus, if the LMs learn

that syntactic gaps require wh-filler, then

sentences with a proper wh-filler are expected to

yield lower surprisal than minimally different

sentences that lack a proper wh-filler.

4. Wh-Licensing Interaction for filler-gap

dependencies effects

We tested whether LSTM LMs have learned filler

–gap dependency by examining a 2x2 interaction

between a wh-filler and a gap. The interaction

between a wh-filler and a gap represents the

extent to which either a wh-filler or its gap ends

up not being properly associated or licensed,

thereby ‘no gap’ or ‘no filler’ effects arising

maximizing the surprisal. We term the effects of

both ‘no gap’ and ‘no filler’ more specifically the

wh-licensing interaction effects[7].

We measured such effects, by examining four

minimally varying sentences, given the examples

in Table 3 that contain the four possible

combination of (no) fillers and (no) gaps in specific

syntactic positions. Note that the three symbols: (i)

■ (i.e., the final gap position where the wh-filler

is integrated for proper interpretation), (ii) □ (i.e.,

the wh-filler position), and (iii) ◯ (i.e., the

intermediate gap position where the wh-filler

drops by during its overt displacement) are added

for presentational purposes only and were not

included in test items. All four sentence variants

in (5a-d) were created in order to compute the

34 Journal of The Korea Society of Computer and Information

wh-licensing interaction effects, viz. both no filler

effects in (5c) compared to (5d) and no gap effects

in (5b) compared to (5a):

Sentence Filler Gap

(5a) The manager knew that the secretary

claimed ◯ that the new salesman had

pleased the boss in the meeting.

No No

(5b) **The manager knew who the secretary

claimed ◯ that the new salesman had

pleased the boss in the meeting.

Yes No

(5c) **The manager knew that the

secretary claimed ◯ that the new

salesman had pleased ■ in the meeting.

No Yes

(5d) The manager knew which boss the

secretary claimed ◯ that the new

salesman had pleased ■ in the meeting.

Yes Yes

Table 3. The four combination of fillers and gaps.

If a wh-filler sets up an expectation for the

presence of a gap, then in sentences containing a

wh-licensor but no gap as in (5b) we expect higher

surprisal in syntactic positions. That is,

   should be a large positive number.

The presence of a gap in the absence of a

wh-licensor as in (5c) should also result in higher

surprisal than when the wh-licensor is present.

That is,    should be a large negative

number. We can assess how well the model has

learned both expectations by adding up the two

types of effects:

       

which result in improper filler-gap dependency

or wh-licensing interaction effects.

To reiterate, if the LSTM LMs learn the

filler-gap dependency, we expect wh-licensing

interaction effects to amount to a large positive

number in surprisal. In other words, a positive

surprisal value of the wh-licensing interaction

effects means that the model is able to learn a

filler-gap dependency between a wh-filler and its

gap. Conversely, a negative surprisal value of the

wh-licensing interaction effects points to the fact

that the model is not able to[7].

5. Mixed-effects linear regression model for

wh-licensing interaction effects

If the LSTM LM learns a filler-gap dependency

between a wh-word and its gap, we expect

wh-licensing interaction effects to be a positive

number in surprisal. For example, to ascertain

whether ‘no gap’ or ‘no filler’ effects in Table 3,

as a fixed effect, lead to wh-licensing interaction

effects, we controled for variation between the

different sentences. To do that, we derive the

statistical significance of the wh-licensing

interaction effects from a mixed-effects linear

regression model predicting surprisal given

conditions on the wh-filler gap dependency[13-16].

Modelling the conditions on the filler-gap

dependency and three LMs respectively as fixed

effects and treating the sentences as random

effects, we formulated our mixed-effects linear

regression model as follows:

        

where  is an error term,  is a coefficient for the

fixed effects and interaction effects term, and  is

a coefficient for random effects term. But we

omitted random slopes as we did not have

repeated observations within sentences and

conditions. We fitted our mixed effect model using

the statsmodels packages in Python.

IV. L2 LSTM language modelling

system with the ability to represent

filler-gap dependency

In this section, we finally propose the

LSTM-based language modelling system to

estimate the ability of the L2 LM to learn filler-gap

dependency by using the wh-licensing interaction

effects.

As shown in Figure 5, after sentences

pre-processing, the test sets (lists of sentences

with filler-gap dependency) were taken to the

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency 35

Gulordava model (L1 model) and the other two

models (that is, L2 model and L3 model) as inputs.

The wh-licensing interaction values were

calculated by employing surprisal values extracted

from each model.

In the above formula (2) for the linear

mixed-effects regression model, the dependent

variable was taken as surprisal (that is,

wh-licensing interaction) values, and independent

variables for fixed effects were the different

conditions representing filler-gap dependency.

Sentence index, model type, and sentence level

were used as other variables of the linear mixed

regression model. This was a good model because

it modeled the variation that was present for each

gap and each filler.

Fig. 5. The Workflow for the proposed system

V. Experiment

In this section, we introduce the experimental

environment setup for the two LSTM language

models for L2 and the pre-trained Gulordava

language model for L1.

1. Experimental Environment

We present the hyper-parameters that were

used to train the LSTM LM network on the L2 and

L3 corpora respectively. For the L1 model, we

used the pre-trained LSTM LM (i.e., the Gulordava

model), which achieved the lowest perplexity on

their valid dataset.

The layer_number is the number of the LSTM

layers; the hidden_size is the dimension of the

hidden layer; the learning_rate is a turning

parameter in the optimization algorithm that

determines the step size at each iteration, while

approaching the minium of the loss function; the

epoch denotes the number of times that training is

performed; and the batch_size denotes the number

of training words that feed into the input layer in

each epoch. For the three models in question we

report the following hyper-parameters in Table 4.

Parameter L1 L2 L3

Network LSTM LSTM LSTM

vocab_size 100M 40026 41747

Layer_number 2 2 2

Hidden_size 650 200 200

Learning_rate 0.2 0.2 0.2

Batch_size 128 20 20

Epoch 40 40 40

Embedding_size 650 200 200

Dropout_rate 0.2 0.2 0.2

Table 4. Hyper-parameters for the three models

The experimental environment comprised

Windows 10, i5-6400, NVIDIA Geforce GTX 1050

2GB, and DDR4 8GB. The proposed LSTM RNN

network was implemented in Python using

PyTorch Framework.

2. Training data for LSTM LMs

The L1 corpus for the pre-trained L1 model was

extracted from the Wikipedia. The L2 corpus for

the L2 model is a collection of all the sentences

extracted from English textbook corpora based on

the English 11 middle-school and 12 highschool

textbooks published in Korea in 2001 and the

English 19 middle-school and 12 highschool

textbooks published in Korea in 2009. The L3

corpus for the L3 model is a collection of all the

sentences extracted from EBS-CSAT English Prep

Books published in Korea in 2016∼2018, on top of

the L2 English textbook corpora mentioned above.

All the training sets were shuffled at sentence

level, and we filtered out sentences with more

than 5% unknown words. Each training set was

split into a training subset and a validation subset

at an 8:1 ratio. Each model used the most

36 Journal of The Korea Society of Computer and Information

frequent words in the training Corpus, replacing

the other tokens with the <unk> symbol in the

Vocabulary.

3. Test data for LSTM LMs

In this section, we report the design of the test

set for the three LSTM models to measure word

surprisal to estimate filler-gap dependency. We

investigated whether LSTM LMs model the

probabilistic dependency between fillers and gaps at

all. We introduce the two cases in point which

represent how well the three LMs with the LSTM

networks learn the wh-licensing relationship. The

relationship is to represent the filler-gap effects at

the final gap position. It is specifically represented

in the four sentence conditions of filler-gap

dependency: that is, Long vs. Short condition and

VP vs. NP condition. A positive wh-licensing

interaction means that a model can track a

filler-gap dependency between the wh-word and the

gap sites; a negative licensing interaction means

that no such dependency can be acquired by it.

Case 1 : Long vs. Short condition.

We finally examined whether LSTM LMs can

learn constraints on filler–gap dependencies by

comparing the wh-licensing interactions in Long

condition with those in Short condition.

To measure the difference between Long and

Short conditions at the final gap position, we

designed the 60 sets of four test conditions (30

Long and 30 Short condition sets) for the three

models L1, L2, and L3, in a 2 x 2 design for a total

of 240 sentences, as in Table 5. For each set we

produced four variant conditions, as described

above. In the following set of four conditions, the

filler (□) is ‘who’ or ‘which’, and the gap(■) is

placed before the preposition ‘before’. The symbol

◯ is the intervening gap position that the wh-filler

drops by as it searches for its final gap.

In the four Short condition sentences, the

distance between filler and gap is shorter than in

the Long wh-condition counterparts, so when the

filler finds ■, less surprisal is expected to arise.

We extracted the Softmax values of the

post-gap region items (such as the preposition

‘before’). When the LSTM LMs learned the

wh-licensing of the filler-gap dependency, then we

predicted to discover wh-licensing interaction

effects at the final gap that might vary in terms of

the distance between a wh-filler and its gap.

Level Condition Sentence Filler Gap

a Short

The townspeople hoped

that the cameraman

knew that the former

mayor would honor the

soldiers before the

fireworks.

No No

b Short

The townspeople hoped

that the cameraman

knew who the former

mayor would honor the

soldiers before the

fireworks.

Yes No

c Short

The townspeople hoped

that the cameraman

knew that the former

mayor would honor ■

before the fireworks.

No Yes

d Short

The townspeople hoped

that the cameraman

knew which soldiers the

former mayor would

honor ■ before the

fireworks.

Yes Yes

a Long

The cameraman knew

that the townspeople

hoped ◯ that the

former mayor would

honor the soldiers

before the fireworks.

No No

b Long

The cameraman knew

who the townspeople

hoped ◯ the former

mayor would honor the

soldiers before the

fireworks.

Yes No

c Long

The cameraman knew

that the townspeople

hoped ◯ that the

former mayor would

honor ■ before the

fireworks.

No Yes

d Long

The cameraman knew

which soldiers the

townspeople hoped ◯

that the former mayor

would honor ■ before

the fireworks.

Yes Yes

Table. 5. Test sentences for Short and Long conditions

Case 2 : VP vs. NP condition.

In addition, we also examined whether LSTM

LMs can learn the syntactic role of an

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency 37

Level Condition Sentence Filler Gap

a VP

The manager knew that

the secretary claimed

◯ that the new

salesman had pleased

the boss in the meeting.

No No

b VP

The manager knew

who the secretary

claimed ◯ that the new

salesman had pleased

the boss in the meeting.

Yes No

c VP

The manager knew that

the secretary claimed

◯ that the new

salesman had pleased

■ in the meeting.

No Yes

d VP

The manager knew

which boss the

secretary claimed ◯

that the new salesman

had pleased ■ in the

meeting.

Yes Yes

a NP

The manager knew that

the secretary’s claim

about the new

salesman had pleased

the boss in the meeting.

No No

Table 6. Test sentences for VP and NP conditions

b NP

The manager knew

who the secretary’s

claim about the new

salesman had pleased

the boss in the meeting.

Yes No

c NP

The manager knew that

the secretary’s claim

about the new

salesman had pleased

■ in the meeting.

No Yes

d NP

The manager knew

which boss the

secretary’s claim about

the new salesman had

pleased ■ in the

meeting.

Yes Yes

intermediate gap in filler–gap dependency by

comparing the wh-licensing interaction effects in

the Noun Phrase (NP) conditions with those in

Verb Phrase (VP) conditions.

When the LSTM LMs learned the presence of the

intervening gap in the wh-licensing of the filler-gap

dependency, then we predicted to find wh-licensing

interaction effects at the final gap position.

To test the embedding clause of the model’s

filler-gap dependency representation, we designed

the 40 test items for the three models L1, L2, and

L3, in a 2 x 2 design for a total of 160 sentences,

as in Table 6.

In Table 6, the NP conditions are comparatively

similar in filler-gap distance to the VP conditions.

But the latter conditions have an intermediate gap

position that the wh-filler drops by to find the

final gap; this is represented as ◯. It has been

generally noted in theoretical studies of grammar

that the surprisal value increases if ◯ is present;

otherwise, it deceases. For 4 variant levels of each

condition, we measured the wh-licensing

interaction effects in the post-gap items right after

the final gap position.

VI. Results

In this section, the results for the two

experiments with the test data described in Case 1

and Case 2 are to be reported. We demonstrated

whether with the L1 LM as a baseline, the LSTM

LMs for L1, L2, and L3 learned the difference of

the two conditions (that is, Long vs. Short, VP vs.

NP) of filler–gap dependency. To anticipate the

results, we found a significant wh-licensing

interaction resulting in fluctuation of surprisal for

the conditions att issue.

The results from the experiments for Case 1 can

be found in Figure 6. On the left three panels,

between the three experiments shown left, we

found a significant decrease in wh-licensing

interaction effects for the Long condition, relative

to the Short condition in both the L1 model and

the L3 model. This indicates a significant

reduction in surprisal (i.e., wh-licensing

interaction) in the Long condition (  ) in

Table 7. By contrast, in the L2 LM we find no

significant decrease in surprisal (wh-licensing

interaction) in the Long condition, relative to the

Short condition.

The results from the experiments for Case 2 can

be found on the right three panels in Figure 6,

between the three experiments shown right. For L1

model we found a significant decrease in surprisal

for the VP condition, compared to the NP condition.

This indicates a significant reduction of surprisal

38 Journal of The Korea Society of Computer and Information

(wh-licensing interaction) for the VP condition

(  ) in relation to the Long condition in Table

7. Conversely, in both L2 and L3 LMs we have found

no significant decrease in surprisal for the VP

condition, compared to the NP condition.

Fig. 6. Wh-licensing interaction effects for two cases

Case 1 for L1 model

Coefficient STD z-value p>|z|

Intercept -0.612 0.122 -5.013 0.000

C(condition)[T.Short] 1.224 0.211 5.804 0.000

Case 2 for L1 model

Coefficient STD z-value p>|z|

Intercept 0.572 0.202 2.824 0.005

C(condition)[T.VP] -1.143 0.217 -5.269 0.000

Case 1 for L2 model

Coefficient STD z-value p>|z|

Intercept 0.044 0.160 0.272 0.786

C(condition)[T.Short] -0.087 0.195 -0.447 0.655

Case 2 for L2 model

Coefficient STD z-value p>|z|

Intercept 0.118 0.262 0.450 0.653

C(condition)[T.VP] -0.236 0.294 -0.802 0.423

Case 1 for L3 model

Coefficient STD z-value p>|z|

Intercept -0.341 0.123 -2.772 0.006

C(condition)[T.Short] 0.682 0.209 3.263 0.001

Case 2 for L3 model

Coefficient STD z-value p>|z|

Intercept -0.046 0.229 -0.200 0.841

C(condition)[T.VP] 0.092 0.235 0.390 0.696

Table. 7 Correlations between conditions for each

model

In addition, we went on to examine whether

there exists a significant difference for the L1 vs.

L2 models or the L1 vs. L3 models in the VP

condition. The results from the experiments can

be found in Figure 7. On the left panel, in the VP

condition we found a significant reduction in

surprisal of the L1 model, relative to the L2 model

(  ). Besides, in the VP condition we also

found a significant decrease in surprisal of the Ll

model, compared to the L3 LM (  ), as

shown in Table 8.

We then examined whether there exists a

significant difference for the L1 vs. L2 models or the

L1 vs. L3 models in the Long condition. The results

from the experiments can be found on the right

panel of Figure 7. In the Long condition we found

a significant reduction in surprisal of the L1 model,

compared to the L2 model (  ). In tandem, in

the Long condition we found a significant decrease

in surprisal of the L1 model in relation to the L3

model (  ), as shown in Table 8.

Fig. 7. Wh-licensing interaction effects for three models

VP vs. NP

Coefficient STD z-value p>|z|

Intercept 0.883 0.254 3.479 0.001

C(condition)[T.VP]:C(mo

del)[T.l2]
1.059 0.366 2.895 0.004

C(condition)[T.VP]:C(mo

del)[T.l3]
1.359 0.366 3.716 0.000

Long vs. Short

Coefficient STD z-value p>|z|

Intercept -0.169 0.117 -1.439 1.150

C(condition)[T.Short]:C(

model)[T.l2]
-1.515 0.264 -5.733 0.000

C(condition)[T.Short]:C(

model)[T.l3]
-0.948 0.264 -3.587 0.000

Table 8. Correlations between conditions vs. three

models

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency 39

VII. Conclusions

In this paper, we investigated the correlation

between the amount of English sentences that

L2ers experience and their sentence processing

patterns by examining what LSTM LMs

implementing L2ers’ English learning can learn

about implicit syntactic relationship: that is, the

filler–gap dependency.

Building the three L1, L2, and L3 LMs, we

concentrated on the filler-gap dependency tasks

to investigate the grammatical ability of neural

language models trained on English sentences that

different groups of learners learn English with. We

showed that the L1 model can effectively track

syntactic structure involved in the filler-gap

dependency. Using linear mixed-effects models we

went on to demonstrate that there are significant

differences between the three models in light of

the restrictions on filler-gap dependency.

Particularly, we found that for the L3 model there

was a significant difference between Long and

Short wh-condition of filler–gap dependency. By

contrast, for the L2 model there was no significant

difference between the two conditions of Case 1

and Case 2.

In essence, investigating whether LSTM LMs are

sensitive to different contexts involving filler–gap

dependency, we showed that the language models

display sensitivity to some but not all of the

contexts at issue. Given the study reported in this

paper, two issues are pending for future study.

Since LMs are data-driven, we need to examine in

greater details how the size of training data affects

the ability of an LM to process language. Second,

since the introduction of LSTM, other more

effective algorithms like BERT and three versions

of GPT have been introduced and their

performances have been evaluated seriously. In

this milieu, it is worth investigating how much the

LMs built on more recent algorithms can

contribute to understanding L2 language

processing as well as L1 language processing.

ACKNOWLEDGEMENT

This work was supported by 2020 Shinhan

Univ. Research Grant.

REFERENCES

[1] J. L. Elman, “Distributed representations, simple recurrent

networks, and grammatical structure,” Machine learning, Vol.

7(2-3), pp. 195-225, Sep 1991.

[2] Y. Goldberg, “Neural network methods for natural language

processing,” Synthesis lectures on Human language

Technologies, Vol. 10(1), pp. 1-309, Apr 2017.

[3] S. Hochreiter and S. Jurgen, “Long short-term memory,” Neural

Computation, Vol. 9(8), pp. 1735-1780, Nov 1997.

[4] E. Kim, “Sentence Comprehension with an LSTM Language

Model,” Journal of Digital Contents Society, Vol, 19(12), pp.

2393-2401, Dec 2018.

[5] T. Linzen, E. Dupoux, and Y. Goldberg, “Assessing the ability

of LSTMs to learn syntax-sensitive dependencies,” Transactions

of the Association for Computational Linguistics, Vol. 4, pp.

521-535, Dec 2016.

[6] K. Gulordava, P. Bojanowski, E. Grave, T. Linzen, and M. Baroni,

“Colorless green recurrent networks dream hierarchically,”

NAACL-HLT, pp. 1195-1205, Jun 2018.

[7] E. Wilcox, R. Levy, T. Morita, and R. Futell, “What do RNN

Language Models Learn about Filler-Gap Dependencies?,” ACL

Anthology, Proceedings of the 2018 EMNLP Workshop

Blackbox NLP: Analyzing and Interpreting Neural Networks for

NLP, pp. 211-221, Aug 2019.

[8] A. Kuncoro, C. Dyer, J. Hale, D. Yogatama, S. Clark, and P.

Blunsom, “LSTMs can learn syntax-sensitive dependencies well,

but modeling structure makes them better,” Computational

Linguistics, Vol. 1, pp. 1426–1436, Aug 2018.

[9] K. Tran, A. Bisazza, and C. Monz, “The importance of being

recurrent for modeling hierarchical structure,” In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language

Processing, Aug 2018.

[10] J. Hale, “Uncertainty about the rest of the sentence,” Cognitive

Science, Vol. 30(4), pp. 609–642, Jul 2006.

[11] J. Hale, “A probabilistic Earley parser as a psycholinguistic

model,” Proceedings of the Second meeting of the North

American Chapter of the Association for Computational

Linguistic and Language Technologies, pp. 1-8, Jun 2001.

[12] R. Levy, “Expectation-based syntactic comprehension,”

Cognition, Vol. 106(3), pp. 1126-1177, Mar 2008.

[13] R.H. Baayen, D.J. Davidson, and D.M. Bates, “Mixed-effects

40 Journal of The Korea Society of Computer and Information

modeling with crossed random effects for subjects and items,”

Journal of memory and language, Vol. 59(4), pp. 390-412, Mar

2008.

[14] E. Kim, M. Park, and W. Chung, “On Korean English L2ers’

processing of wh-filler-gap dependencies: An ERP study,”

Language and Information , Vol. 21(3), pp. 1-24, Nov 2017.

[15] E. Kim, “A Deep Learning-based Article- and Paragraph-level

Classification,” The Journal of the Korea Society of Computer

and Information, pp. 31-41, Nov 2018.

[16] E. Kim, “The Unsupervised Learning-based Language Modeling

of Word Comprehension in Korean,” The Journal of the Korea

Society of Computer and Information, pp. 41-49, Nov 2019.

Authors

Euhee Kim received the M.S. degrees in

Computer Engineering from Dongguk

University, Korea, in 2002 and Ph.D.

degrees in Mathematics from The University

of Connecticut, U.S.A in 1995.

Dr. Kim is currently an associate Professor in the

Department of Computer Science & Engineering at Shinhan

University. She is interested in AI, NLP and Big Data

computing.

