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[Abstract]

In this paper, we investigate the correlation between the amount of English sentences that Korean 

English learners (L2ers) are exposed to and their sentence processing patterns by examining what Long 

Short-Term Memory (LSTM) language models (LMs) can learn about implicit syntactic relationship: that 

is, the filler–gap dependency. The filler–gap dependency refers to a relationship between a (wh-)filler, 

which is a wh-phrase like ‘what’ or ‘who’ overtly in clause-peripheral position, and its gap in 

clause-internal position, which is an invisible, empty syntactic position to be filled by the (wh-)filler for 

proper interpretation. Here to implement L2ers’ English learning, we build LSTM LMs that in turn 

learn a subset of the known restrictions on the filler-gap dependency from English sentences in the L2 

corpus that L2ers can potentially encounter in their English learning. Examining LSTM LMs’ behaviors 

on controlled sentences designed with the filler-gap dependency, we show the characteristics of L2ers' 

sentence processing using the information-theoretic metric of surprisal that quantifies violations of the 

filler-gap dependency or wh-licensing interaction effects. Furthermore, comparing L2ers’ LMs with 

native speakers’ LM in light of processing the filler-gap dependency, we not only note that in their 

sentence processing both L2ers’ LM and native speakers’ LM can track abstract syntactic structures 

involved in the filler-gap dependency, but also show using linear mixed-effects regression models that 

there exist significant differences between them in processing such a dependency. 
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[요   약]

본 논문은 장단기기억신경망(LSTM)이 영어를 배우면서 학습한 암묵적 통사 관계인 필러-갭 의

존 관계를 조사하여 영어 문장 학습량과 한국인 영어 학습자(L2ers)의 문장 처리 패턴 간의 상관

관계를 규명한다. 이를 위해, 먼저 장단기기억신경망 언어모델(LSTM LM)을 구축하였다. 이 모델

은 L2ers가 영어 학습 과정에서 잠재적으로 배울 수 있는 L2 코퍼스의 영어 문장들로 심층학습을 

하였다. 다음으로, 이 언어 모델을 이용하여 필러-갭 의존 관계 구조를 위반한 영어 문장을 대상

으로 의문사 상호작용 효과(wh-licensing interaction effect) 즉, 정보 이론의 정보량인 놀라움

(surprisal)의 정도를 계산하여 문장 처리 양상을 조사하였다. 또한 L2ers 언어모델과 상응하는 원어

민 언어모델을 비교 분석함으로써, 두 언어모델이 문장 처리에서 필러-갭 의존 관계에 내재된 추

상적 구문 구조를 추적할 수 있음을 보여주었을 뿐만 아니라, 또한 선형 혼합효과 회귀모델을 사

용하여 본 논문의 중심 연구 주제인 의존 관계 처리에 있어서 원어민 언어모델과 L2ers 언어모델 

간 통계적으로 유의미한 차이가 존재함을 규명하였다.

▸주제어: 장단기기억신경망 언어모델, 영어 문장처리, 필러-갭 의존관계, 놀라움, 선형 혼합효과 회귀모델, 

의문사 상호작용효과

I. Introduction

The language model (LM) based on an algorithm 

like Recurrent Neural Network (RNN), which is 

rapidly developing in the field of recent Natural 

Language Processing (NLP) tasks, conceptually 

correspond to a language acquisition device that 

has frequently been mentioned in the literature on 

the language acquisition and learning theory in 

the generative grammar research. That is, by 

applying theory and practice, particularly through 

the development of an LM that models the 

sentence processing of Korean English learners 

(or L2ers) and the analysis for the results of its 

performances, we conduct an integrated 

computational psycholinguistic study of sentence 

processing[1]. 

Sentence processing, in which a sentence is the 

smallest unit of information transfer in foreign 

language use, is essential for understanding 

foreign language learners' use of the language 

they learn. Psycholinguistics has formulated 

various principles that explain the generalizations 

drawn from sentence processing. 

The basic question we can ask is : When Korean 

English learners process a specific sentence in 

English, how does the processing pattern of this 

sentence (that is, the pattern in which the 

principles bearing on sentence processing are 

applied) have a correlation with the accumulated 

language learning experiences they have had? For 

example, assuming that English sentence 

processing is correlated with the learner's 

language learning experience English sentences or 

data, it is a question whether it can be verified 

computationally. 

In the field of computational psycholinguistics 

that seeks to answer such a question, deep neural 

network-based LMs that reproduce language 

learning experiences and language processing 

mechanisms of language learners can serve as an 

excellent tool to investigate the language processing 

patterns of foreign language learners[2].

In this paper, we aim to shed lights on such an 

important issue related to learning English as a 

foreign language by using neural LMs to 

investigate how well deep neural network LMs 

perform on particular types of controlled 

sentences that indicate a representation of a 

syntactic dependency. Specifically, we investigate 
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the correlation between the amount of English 

sentences that L2ers experience and their 

sentence processing patterns by examining what 

RNN LMs learn about implicit syntactic 

relationship: that is, the filler–gap dependency. 

When training an LM with L1 (native speaker) or 

L2 (like Korean English leaner) English sentences 

to model learners with different levels of English 

knowledge, the number of learning (that is, epoch) 

is also adjusted differently. Likewise, we also 

modulate the size of training data for L1 and L2 

LMs. Thereafter, it is possible to inspect the 

correlation of the LMs’ performances with the 

patterns of sentence processing collected for 

human L2ers as well as L1ers. 

To this aim, we are going to build an LM based 

on the Long Short-Term Memory RNN (LSTM), an 

algorithm grounded on deep learning neural 

networks, which has been widely used to model 

LMs in the NLP field. In essence, this study adopts 

NLP's LM methodology, specifically to adapt and 

implement the computational psycholinguistic 

methodology. We thereby build a model that 

reproduces English learners' language 

experiences, by incorporating into it the learning 

methods and sentence processing methods[3-4].

The remainder of the paper is structured as 

follows. Section 2 reviews the relevant studies in 

greater details. Section 3 gives a detailed overview 

of the methods that are going to be employed in 

the LMs to be built. Section 4 proposes the 

LSTM-based language modelling system to 

estimate the ability of the L1 and L2 LMs to learn 

filler-gap dependency. Section 5 and 6 each 

outlines the experiments performed and reports 

the results of the experiments. Section 7 wraps 

with a conclusion.

II. Related works

LSTMs have recently achieved impressive 

results in large-scale tasks like language modeling 

for speech recognition and machine translation, 

as well as computational psycholinguistic modeling 

of human language processing. This suggests that 

LSTMs may learn to track grammatical structure 

even when trained on comparatively noisy natural 

language data[5-7]. 

Particularly, Linzen et al. evaluated the extent 

to which RNNs can approximate hierarchical 

structure in corpus-extracted natural language 

data. They tested whether RNNs can learn to 

predict English subject-verb agreement, a task 

generally thought to require hierarchical 

structure. They argued that the supervised 

language modeling method is not sufficient for 

RNNs to deploy the syntactic knowledge necessary 

to cope with constructions where subject and verb 

agreement occurs in a long-distance fashion, as in 

(1a) and (1b): the symbol ‘**’ means that the given 

sentence is ungrammatical[5].

(1a) The girl that the boys like is . . . 

(1b) **The girl that the boys like are . . . 

Gulordava et al. went on to focus on the more 

interesting unsupervised setup, where RNNs are 

trained to perform large-scale language modelling 

with subject-verb agreement. They demonstrated 

that RNNs trained with an LM objective can solve 

the long-distance agreement problem. Moreover, 

the performance of RNNs on language modeling 

(measured in terms of perplexity) is a good 

predictor of long-distance agreement accuracy. 

This suggests that the ability to capture structural 

generalizations is an important aspect of what 

makes the best RNN architectures excel in language 

modeling. Illustratively, like Linzen et al., they 

focused on long-distance agreement, where an 

arbitrary number of words can occur between the 

elements that engage in the subject-verb agreement 

relation. They concentrated on number (plural or 

singular) agreement, as in (2a) and (2b)[6].
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(2a) The girl (that) [you met yesterday] thinks. . . 

(2b) **The girl (that) [you met yesterday through 

her friends] thinks. . . 

Meanwhile, Wilcox et al. investigated whether 

RNNs can learn English long-distance filler-gap 

dependency and constraints on it. In sentence 

(3a), the (wh-)filler is ‘what’ in clause-edge 

position, and the gap is placed after the transitive 

verb ‘devoured’, the gap position being indicated 

with an underline. If the filler were not present, 

the gap would be ungrammatical, as in (3b)[7].

(3a) I know what the lion devoured _________ at  

       sunrise. 

(3b) **I know that the lion devoured __________  

       at sunrise. 

In this paper, following the lead by Wilcox et al. 

but concentrating on not L1 but L2 LMs, we 

investigate whether LSTM LMs built on the L2 

corpus can truly learn filler-gap dependency. 

To this aim, we examine the filler-gap effects at 

the final gap position. As pointed out above, the 

wh-filler gap dependency in L2ers is undoubtedly 

an ideal test bed to identify the syntactic ability 

that LSTM LMs come to entertain. 

To anticipate the test data to evaluate the 

syntactic ability of LSTM LMs, we use two sets of a 

pair of conditions; (i) Long vs. Short condition and 

(ii) VP vs. NP condition in Table 1. The difference 

between the former Long and Short condition lies 

in the presence/absence of the intermediate gap 

immediately before the subordinator ‘that’, though 

the two conditions differ in light of the distance 

between the wh-filler and its gap, as (4a)-(4b). 

On the other hand, the difference between the 

latter VP and NP condition also lies in the 

presence/absence of the intermediate gap right 

before the subordinator ‘that’, but the two 

conditions here are almost similar in light of the 

distance between the wh-filler and its gap, as 

(4c)-(4d). 

Condition Definition

(4a) Long 
wh-filler . . . intermediate gap ‘that’  . 

. .    final gap

(4b) Short wh-filler . . . final gap

(4c) VP 
wh-filler . . . intermediate gap ‘that’  . 

. .    final gap

(4d) NP 
wh-filler            .   .   .            

   .  final gap

Table 1. Two sets of a pair of conditions

Following Wilcox et al., we are going to quantify 

the improper filler-gap dependency effects using 

the information-theoretic measure of surprisal (to 

be defined below). Thus, in both (4a) vs. (4b) and 

(4c) vs. (4d), we measured the surprisal on a 

preposition right after the final gap, because the 

preposition right after the final gap can reflect 

both ‘no filler effect’ and ‘no gap effect’, which 

amount to the improper filler-gap dependency 

effects at issue.

III. Methods

1. LSTM Language Models

A language model is a statistical model that 

assigns probabilities to words or sentences. We 

typically try to predict the next word in a sentence 

given all the previous words, often referred to as 

“context”. For example, given the context “For 

dinner I’m making_____”, what’s the probability 

that the next word is “plans”? What’s the 

probability that the next word is “pizza”? It is the 

most likely that (pizza| For dinner I’m making) > 

(plans| For dinner I’m making), where  stands 

for the conditional probability.

In this paper, we used the best model with the 

lowest perplexity for L1 language modelling, which 

is the pre-existing LSTM LM trained on an L1 

corpus of English sentences. The model generally 

known as the Gulordava model was selected for its 

previous success in learning the subject-verb 

number agreement task. It was pre-trained on 

about 90M word tokens of English Wikipedia by 

Gulordava et al.[6]. 
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As pointed out above, we also designed two 

LSTM language models on the two L2 corpora (to 

be specified below) to model L2ers with different 

levels of English knowledge by adapting the same 

Gulordava model architecture, shown in Figure 1.

Fig. 1. LSTM network architecture for language modeling

As is now well known, the LSTM LM represents 

a word-to-word prediction LM composed of 

multiple layers: (1) Tokenize: splits input sentences 

into words tokens (integers) based on white space 

in sentences, and generates two symbols “<eos>” 

and “<unk>”. This is not a layer for the LSTM 

network but a mandatory step of converting words 

into tokens; (2) Input Layer: tokenizes input 

sentences like “have you called for help?” with an 

extra unit that represents <eos>, that is, the end 

of a sentence (eos); (3) Embedding Layer: converts 

word tokens into embedding of specific size; (4) 

LSTM Layer: is defined by hidden state dimension 

and the number of layers; (5) Dropout Layer: is 

used to prevent over-fitting during the learning 

process; (6) Fully Connected Linear Layer: maps 

the output of the final LSTM layer to a desired 

output size; (7) Softmax Layer: turns all output 

values in a probability distribution; (8) Output 

Layer: The Softmax output from the previous time 

step to the next time step is considered as the 

final output of this network.

In Figure 1, word tokens (integers) from the 

input layer are fed into the embedding layer and 

then the two layers of LSTM cells. We define the 

shape of the inputs using the batch size and 

maximum-length of a sentence. The LSTM 

network module is shown to be rolled over all the 

time steps. Each input unit corresponds to one 

word, making maximum input units fix 

maximum-length words in the input sentence with 

variable length. 

The proposed LSTM networks, which are built 

upon PyTorch, are refer to L2 model and L3 

model to learn filler-gap dependencies for L2ers. 

On the other hand, we used the pre-trained 

Gulordava model for L1 model. We reported the 

hyper-parameters and further model details, 

which are used for LSTM LM implementation (to 

be defined in section V).

The implementation of the L2 LM (built on 

English textbooks for L2ers) and L3 LM (built on 

EBS-CSAT English Prep Books as well as English 

textbooks for L2ers) respectively consists of three 

major phases such as sentence preprocessing, LM 

training, and LM evaluating: 

(1) The sentences preprocessing phase: To input 

English sentences, first uppercase letters were 

converted to lowercase letters, and only alphabet 

letters was extracted by removing special 

characters and symbols. As in Figure 2, the 

function create_vocabulary took the cleaned 

sentences as input and generated the Vocabulary 

database for each model; after splitting each 

sentence with symbol <eos> using a white space, 

the Vocabulary database for each model included 

unique lower case word tokens and special 

symbols <eos> and <unk>.

Fig. 2. The English sentence preprocessing phase
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The function create_corpus took the cleaned 

sentences as input and generated the Corpus 

database for each model; After having filtered 

unknown words in sentences which do not belong 

to the Vocabulary database with symbol <unk> 

through the function filter, the Corpus database 

came to consist of Train list, Valid list, and Test list. 

(2) The LM training phase: Figure 3 shows the 

deep training process of the LM based on the 

LSTM network architecture shown in Figure 1. The 

function get_batch took the Corpus database with 

Train and Valid lists as input and generated the 

targets and data (that is, inputs) encoded by 

one-hot vectors. 

These inputs were fed into the Embedding layer 

which generated dense vectors. In the flow of the 

Forward operation, for each time-step the LSTM 

cell took both the embedding vectors and the 

hidden state weights of the previous time-step and 

returned the new hidden state weights as an 

output. The outputs passed through the fully 

Connected linear layer and the Softmax layer. 

From the function evaluate_loss, the train/valid 

loss was calculated by comparing them with the 

targets using the loss function, that is, 

CrossEntropyLoss. In the flow of the Backward

operation, Backpropagation was performed on the 

loss function. Iterative learning of Forward and 

Backward operations was performed in batch units 

by adjusting learning rates. Finally, using Adam’s 

optimizer, the optimized models for the two 

models (that is, L2 and L3 LMs) were saved.

Fig. 3. The LSTM LM training phase

(3) The LSTM LM evaluating phase: The Figure 4 

shows that the evaluating process of the LSTM 

language model learned the filler-gap dependency 

in question. The function get_batch took the 

Corpus database with test sentences as input and 

generated the targets and data encoded by 

one-hot vectors. 

Then, the three optimized pre-trained L1, L2, and 

L3 models respectively was loaded. Each model took 

these inputs and generated the outputs passed 

through the Softmax layer. We used the Softmax 

function to calculate the probability distribution 

predicting the corresponding test words. 

In addition, the loss value was calculated by 

comparing the Softmax result value and the target 

value through the CrossEntropy loss function, and 

the surprisal for a word at issue was calculated by 

the Softmax results.

Fig. 4. The LSTM LM evaluating phase

2. Perplexity for language model 

Perplexity is an evaluation metric used to judge 

how good a language model is. For example, if we 

have a perplexity of 100, it means that whenever 

the model is trying to guess the next word, the 

model is as confused as if it had to pick between 

100 words. Perplexity(ppl) is defined as follows: 

  
 


      

 

where  is a trained language model, 

       is a sequence of  words, 
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      
  



 is the probability of 

a sentence of words given by a product. The 

logarithm is taken in base 2.

The following Table 2 shows the perplexity as in 

the above formula (1) of each of the three LSTM 

LMs (that is, L1, L2, and L3 models) on the valid set. 

LSTM LM L1(Gulordava) L2 L3

ppl 52.1 46.26 47.40

Table 2. The perplexity of the three LSTM LMs

A caveat is in order. In previous work, 

perplexity and grammatical judgment accuracy 

have been reported to be partly dissociable[8-9].

3. Surprisal for information density

The measure of surprisal is widely used in 

information-theoretic modelling of human 

language. For example, consider the following 

English sentence: “She went to the grocery shop 

to buy some apples and ( ).” To fill in the 

appropriate word for the blank ( ), we predict that 

‘pears’ is a good continuation after ‘apples’, while 

for instance ‘books’ is not. Language models 

provide the following outputs: assigning a low 

probability and hence a high surprisal value to the 

word ‘books’, but assigning a high probability and 

hence a low surprisal value to the word ‘pears’. 

If we successively obtain a surprisal value for 

each word of a sentence given the preceding 

words, we get an information density profile of 

that sentence. If a word is highly unexpected in 

the sentence containing that word, it will lead to a 

high surprisal value. It is known to correlate 

directly with human sentence processing 

difficulty[10-12].

For a certain word, surprisal is the negative 

log-likelihood of this word given an LSTM’s hidden 

state before taking it:

   log     

where for  of a sentence’s  word,   is 

the LSTM’s hidden state before encountering . 

We calculated surprisal values from the LSTM LMs 

by directly computing the negative log of the 

predicted conditional probability from the Softmax 

layer in Figure 1. 

In this paper, we investigated the LSTM LMs’ 

learning about wh-filler and gap dependency by 

measuring the effects that the wh-filler has on the 

gap. That is, we evaluated the surprisal value for 

a word immediately following the gap when there 

is a gap. We looked for the cases where the 

surprisal value associated with an unusual 

sentence containing a gap is reduced by the 

presence of its wh-filler. Thus, if the LMs learn 

that syntactic gaps require wh-filler, then 

sentences with a proper wh-filler are expected to 

yield lower surprisal than minimally different 

sentences that lack a proper wh-filler.

4. Wh-Licensing Interaction for filler-gap 

dependencies effects

We tested whether LSTM LMs have learned filler

–gap dependency by examining a 2x2 interaction 

between a wh-filler and a gap. The interaction 

between a wh-filler and a gap represents the 

extent to which either a wh-filler or its gap ends 

up not being properly associated or licensed, 

thereby ‘no gap’ or ‘no filler’ effects arising 

maximizing the surprisal. We term the effects of 

both ‘no gap’ and ‘no filler’ more specifically the 

wh-licensing interaction effects[7]. 

We measured such effects, by examining four 

minimally varying sentences, given the examples 

in Table 3 that contain the four possible 

combination of (no) fillers and (no) gaps in specific 

syntactic positions. Note that the three symbols: (i) 

■ (i.e., the final gap position where the wh-filler 

is integrated for proper interpretation), (ii) □ (i.e., 

the wh-filler position), and (iii) ◯ (i.e., the 

intermediate gap position where the wh-filler 

drops by during its overt displacement) are added 

for presentational purposes only and were not 

included in test items. All four sentence variants 

in (5a-d) were created in order to compute the 
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wh-licensing interaction effects, viz. both no filler 

effects in (5c) compared to (5d) and no gap effects 

in (5b) compared to (5a):

Sentence Filler Gap

(5a) The manager knew that the secretary 

claimed ◯ that the new salesman had 

pleased the boss in the meeting.

No No

(5b) **The manager knew who the secretary 

claimed ◯ that the new salesman had 

pleased the boss in the meeting. 

Yes No

(5c) **The manager knew that the 

secretary claimed ◯ that the new 

salesman had pleased ■ in the meeting.

No Yes

(5d) The manager knew which boss the 

secretary claimed ◯ that the new 

salesman had pleased ■ in the meeting.

Yes Yes

Table 3. The four combination of fillers and gaps. 

If a wh-filler sets up an expectation for the 

presence of a gap, then in sentences containing a 

wh-licensor but no gap as in (5b) we expect higher 

surprisal in syntactic positions. That is, 

   should be a large positive number. 

The presence of a gap in the absence of a 

wh-licensor as in (5c) should also result in higher 

surprisal than when the wh-licensor is present. 

That is,    should be a large negative 

number. We can assess how well the model has 

learned both expectations by adding up the two 

types of effects: 

       

which result in improper filler-gap dependency 

or wh-licensing interaction effects. 

To reiterate, if the LSTM LMs learn the 

filler-gap dependency, we expect wh-licensing 

interaction effects to amount to a large positive 

number in surprisal. In other words, a positive 

surprisal value of the wh-licensing interaction 

effects means that the model is able to learn a 

filler-gap dependency between a wh-filler and its 

gap. Conversely, a negative surprisal value of the 

wh-licensing interaction effects points to the fact 

that the model is not able to[7].

5. Mixed-effects linear regression model for 

wh-licensing interaction effects

If the LSTM LM learns a filler-gap dependency 

between a wh-word and its gap, we expect 

wh-licensing interaction effects to be a positive 

number in surprisal. For example, to ascertain 

whether ‘no gap’ or ‘no filler’ effects in Table 3, 

as a fixed effect, lead to wh-licensing interaction 

effects, we controled for variation between the 

different sentences. To do that, we derive the 

statistical significance of the wh-licensing 

interaction effects from a mixed-effects linear 

regression model predicting surprisal given 

conditions on the wh-filler gap dependency[13-16]. 

Modelling the conditions on the filler-gap 

dependency and three LMs respectively as fixed 

effects and treating the sentences as random 

effects, we formulated our mixed-effects linear 

regression model as follows:

        

where  is an error term,  is a coefficient for the 

fixed effects and interaction effects term, and  is 

a coefficient for random effects term. But we 

omitted random slopes as we did not have 

repeated observations within sentences and 

conditions. We fitted our mixed effect model using 

the statsmodels packages in Python.

IV. L2 LSTM language modelling 

system with the ability to represent 

filler-gap dependency

In this section, we finally propose the 

LSTM-based language modelling system to 

estimate the ability of the L2 LM to learn filler-gap 

dependency by using the wh-licensing interaction 

effects.

As shown in Figure 5, after sentences 

pre-processing, the test sets (lists of sentences 

with filler-gap dependency) were taken to the 
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Gulordava model (L1 model) and the other two 

models (that is, L2 model and L3 model) as inputs. 

The wh-licensing interaction values were 

calculated by employing surprisal values extracted 

from each model. 

In the above formula (2) for the linear 

mixed-effects regression model, the dependent 

variable was taken as surprisal (that is, 

wh-licensing interaction) values, and independent 

variables for fixed effects were the different 

conditions representing filler-gap dependency. 

Sentence index, model type, and sentence level 

were used as other variables of the linear mixed 

regression model. This was a good model because 

it modeled the variation that was present for each 

gap and each filler.

Fig. 5. The Workflow for the proposed system 

V. Experiment

In this section, we introduce the experimental 

environment setup for the two LSTM language 

models for L2 and the pre-trained Gulordava 

language model for L1.

1. Experimental Environment

We present the hyper-parameters that were 

used to train the LSTM LM network on the L2 and 

L3 corpora respectively. For the L1 model, we 

used the pre-trained LSTM LM (i.e., the Gulordava 

model), which achieved the lowest perplexity on 

their valid dataset. 

The layer_number is the number of the LSTM 

layers; the hidden_size is the dimension of the 

hidden layer; the learning_rate is a turning 

parameter in the optimization algorithm that 

determines the step size at each iteration, while 

approaching the minium of the loss function; the 

epoch denotes the number of times that training is 

performed; and the batch_size denotes the number 

of training words that feed into the input layer in 

each epoch. For the three models in question we 

report the following hyper-parameters in Table 4.

Parameter L1 L2 L3 

Network LSTM LSTM LSTM 

vocab_size 100M 40026 41747

Layer_number 2 2 2

Hidden_size 650 200 200

Learning_rate 0.2 0.2 0.2

Batch_size 128 20 20

Epoch 40 40 40

Embedding_size 650 200 200

Dropout_rate 0.2 0.2 0.2

Table 4. Hyper-parameters for the three models

The experimental environment comprised 

Windows 10, i5-6400, NVIDIA Geforce GTX 1050 

2GB, and DDR4 8GB. The proposed LSTM RNN 

network was implemented in Python using 

PyTorch Framework.

2. Training data for LSTM LMs 

The L1 corpus for the pre-trained L1 model was 

extracted from the Wikipedia. The L2 corpus for 

the L2 model is a collection of all the sentences 

extracted from English textbook corpora based on 

the English 11 middle-school and 12 highschool 

textbooks published in Korea in 2001 and the 

English 19 middle-school and 12 highschool 

textbooks published in Korea in 2009. The L3 

corpus for the L3 model is a collection of all the 

sentences extracted from EBS-CSAT English Prep 

Books published in Korea in 2016∼2018, on top of 

the L2 English textbook corpora mentioned above. 

All the training sets were shuffled at sentence 

level, and we filtered out sentences with more 

than 5% unknown words. Each training set was 

split into a training subset and a validation subset 

at an 8:1 ratio. Each model used the most 
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frequent words in the training Corpus, replacing 

the other tokens with the <unk> symbol in the 

Vocabulary.

3. Test data for LSTM LMs 

In this section, we report the design of the test 

set for the three LSTM models to measure word 

surprisal to estimate filler-gap dependency. We 

investigated whether LSTM LMs model the 

probabilistic dependency between fillers and gaps at 

all. We introduce the two cases in point which 

represent how well the three LMs with the LSTM 

networks learn the wh-licensing relationship. The 

relationship is to represent the filler-gap effects at 

the final gap position. It is specifically represented 

in the four sentence conditions of filler-gap 

dependency: that is, Long vs. Short condition and 

VP vs. NP condition. A positive wh-licensing 

interaction means that a model can track a 

filler-gap dependency between the wh-word and the 

gap sites; a negative licensing interaction means 

that no such dependency can be acquired by it. 

Case 1 : Long vs. Short condition. 

We finally examined whether LSTM LMs can 

learn constraints on filler–gap dependencies by 

comparing the wh-licensing interactions in Long 

condition with those in Short condition. 

To measure the difference between Long and 

Short conditions at the final gap position, we 

designed the 60 sets of four test conditions (30 

Long and 30 Short condition sets) for the three 

models L1, L2, and L3, in a 2 x 2 design for a total 

of 240 sentences, as in Table 5. For each set we 

produced four variant conditions, as described 

above. In the following set of four conditions, the 

filler (□) is ‘who’ or ‘which’, and the gap(■) is 

placed before the preposition ‘before’. The symbol 

◯ is the intervening gap position that the wh-filler 

drops by as it searches for its final gap. 

In the four Short condition sentences, the 

distance between filler and gap is shorter than in 

the Long wh-condition counterparts, so when the 

filler finds ■, less surprisal is expected to arise. 

We extracted the Softmax values of the 

post-gap region items (such as the preposition 

‘before’). When the LSTM LMs learned the 

wh-licensing of the filler-gap dependency, then we 

predicted to discover wh-licensing interaction 

effects at the final gap that might vary in terms of 

the distance between a wh-filler and its gap.

Level Condition Sentence Filler Gap

a Short

The townspeople hoped 

that the cameraman 

knew that the former 

mayor would honor the 

soldiers before the 

fireworks.

No No

b Short

The townspeople hoped 

that the cameraman 

knew who the former 

mayor would honor the 

soldiers before the 

fireworks.

Yes No

c Short

The townspeople hoped 

that the cameraman 

knew that the former 

mayor would honor ■ 

before the fireworks.

No Yes

d Short

The townspeople hoped 

that the cameraman 

knew which soldiers the 

former mayor would 

honor ■ before the 

fireworks.

Yes Yes

a Long

The cameraman knew 

that the townspeople 

hoped ◯ that the 

former mayor would 

honor the soldiers 

before the fireworks.

No No

b Long

The cameraman knew 

who the townspeople 

hoped ◯ the former 

mayor would honor the 

soldiers before the 

fireworks.

Yes No

c Long

The cameraman knew 

that the townspeople 

hoped ◯ that the 

former mayor would 

honor ■ before the 

fireworks.

No Yes

d Long

The cameraman knew 

which soldiers the 

townspeople hoped ◯ 

that the former mayor 

would honor ■ before 

the fireworks.

Yes Yes

Table. 5. Test sentences for Short and Long conditions

Case 2 : VP vs. NP condition. 

In addition, we also examined whether LSTM 

LMs can learn the syntactic role of an 
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Level Condition Sentence Filler Gap

a VP

The manager knew that 

the secretary claimed 

◯ that the new 

salesman had pleased 

the boss in the meeting.

No No

b VP

The manager knew 

who the secretary 

claimed ◯ that the new 

salesman had pleased 

the boss in the meeting.

Yes No

c VP

The manager knew that 

the secretary claimed 

◯ that the new 

salesman had pleased 

■ in the meeting.

No Yes

d VP

The manager knew 

which boss the 

secretary claimed ◯ 

that the new salesman 

had pleased ■ in the 

meeting.

Yes Yes

a NP

The manager knew that 

the secretary’s claim 

about the new 

salesman had pleased 

the boss in the meeting.

No No

Table 6. Test sentences for VP and NP conditions

b NP

The manager knew 

who the secretary’s 

claim about the new 

salesman had pleased 

the boss in the meeting.

Yes No

c NP

The manager knew that 

the secretary’s claim 

about the new 

salesman had pleased 

■ in the meeting.

No Yes

d NP

The manager knew 

which boss the 

secretary’s claim about 

the new salesman had 

pleased ■ in the 

meeting.

Yes Yes

intermediate gap in filler–gap dependency by 

comparing the wh-licensing interaction effects in 

the Noun Phrase (NP) conditions with those in 

Verb Phrase (VP) conditions. 

When the LSTM LMs learned the presence of the 

intervening gap in the wh-licensing of the filler-gap 

dependency, then we predicted to find wh-licensing 

interaction effects at the final gap position.

To test the embedding clause of the model’s 

filler-gap dependency representation, we designed 

the 40 test items for the three models L1, L2, and 

L3, in a 2 x 2 design for a total of 160 sentences, 

as in Table 6. 

In Table 6, the NP conditions are comparatively 

similar in filler-gap distance to the VP conditions. 

But the latter conditions have an intermediate gap 

position that the wh-filler drops by to find the 

final gap; this is represented as ◯. It has been 

generally noted in theoretical studies of grammar 

that the surprisal value increases if ◯ is present; 

otherwise, it deceases. For 4 variant levels of each 

condition, we measured the wh-licensing 

interaction effects in the post-gap items right after 

the final gap position.

VI. Results

In this section, the results for the two 

experiments with the test data described in Case 1 

and Case 2 are to be reported. We demonstrated 

whether with the L1 LM as a baseline, the LSTM 

LMs for L1, L2, and L3 learned the difference of 

the two conditions (that is, Long vs. Short, VP vs. 

NP) of filler–gap dependency. To anticipate the 

results, we found a significant wh-licensing 

interaction resulting in fluctuation of surprisal for 

the conditions att issue. 

The results from the experiments for Case 1 can 

be found in Figure 6. On the left three panels, 

between the three experiments shown left, we 

found a significant decrease in wh-licensing 

interaction effects for the Long condition, relative 

to the Short condition in both the L1 model and 

the L3 model. This indicates a significant 

reduction in surprisal (i.e., wh-licensing 

interaction) in the Long condition (  ) in 

Table 7. By contrast, in the L2 LM we find no 

significant decrease in surprisal (wh-licensing 

interaction) in the Long condition, relative to the 

Short condition.

The results from the experiments for Case 2 can 

be found on the right three panels in Figure 6, 

between the three experiments shown right. For L1 

model we found a significant decrease in surprisal 

for the VP condition, compared to the NP condition. 

This indicates a significant reduction of surprisal 
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(wh-licensing interaction) for the VP condition 

(  ) in relation to the Long condition in Table 

7. Conversely, in both L2 and L3 LMs we have found 

no significant decrease in surprisal for the VP 

condition, compared to the NP condition.

Fig. 6. Wh-licensing interaction effects for two cases

Case 1 for L1 model 

Coefficient STD z-value p>|z|

Intercept -0.612 0.122 -5.013 0.000

C(condition)[T.Short] 1.224 0.211 5.804 0.000

Case 2 for L1 model

Coefficient STD z-value p>|z|

Intercept 0.572 0.202 2.824 0.005

C(condition)[T.VP] -1.143 0.217 -5.269 0.000

Case 1 for L2 model 

Coefficient STD z-value p>|z|

Intercept 0.044 0.160 0.272 0.786

C(condition)[T.Short] -0.087 0.195 -0.447 0.655

Case 2 for L2 model

Coefficient STD z-value p>|z|

Intercept 0.118 0.262 0.450 0.653

C(condition)[T.VP] -0.236 0.294 -0.802 0.423

Case 1 for L3 model 

Coefficient STD z-value p>|z|

Intercept -0.341 0.123 -2.772 0.006

C(condition)[T.Short] 0.682 0.209 3.263 0.001

Case 2 for L3 model 

Coefficient STD z-value p>|z|

Intercept -0.046 0.229 -0.200 0.841

C(condition)[T.VP] 0.092 0.235 0.390 0.696

Table. 7 Correlations between conditions for each 

model

In addition, we went on to examine whether 

there exists a significant difference for the L1 vs. 

L2 models or the L1 vs. L3 models in the VP 

condition. The results from the experiments can 

be found in Figure 7. On the left panel, in the VP 

condition we found a significant reduction in 

surprisal of the L1 model, relative to the L2 model 

(  ). Besides, in the VP condition we also 

found a significant decrease in surprisal of the Ll 

model, compared to the L3 LM (  ), as 

shown in Table 8. 

We then examined whether there exists a 

significant difference for the L1 vs. L2 models or the 

L1 vs. L3 models in the Long condition. The results 

from the experiments can be found on the right 

panel of Figure 7. In the Long condition we found 

a significant reduction in surprisal of the L1 model, 

compared to the L2 model (  ). In tandem, in 

the Long condition we found a significant decrease 

in surprisal of the L1 model in relation to the L3 

model (  ), as shown in Table 8.

Fig. 7. Wh-licensing interaction effects for three models

VP vs. NP 

Coefficient STD z-value p>|z|

Intercept 0.883 0.254 3.479 0.001

C(condition)[T.VP]:C(mo

del)[T.l2] 
1.059 0.366 2.895 0.004

C(condition)[T.VP]:C(mo

del)[T.l3]
1.359 0.366 3.716 0.000

Long vs. Short 

Coefficient STD z-value p>|z|

Intercept -0.169 0.117 -1.439 1.150

C(condition)[T.Short]:C(

model)[T.l2]
-1.515 0.264 -5.733 0.000

C(condition)[T.Short]:C(

model)[T.l3]
-0.948 0.264 -3.587 0.000

Table 8. Correlations between conditions vs. three 

models
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VII. Conclusions

In this paper, we investigated the correlation 

between the amount of English sentences that 

L2ers experience and their sentence processing 

patterns by examining what LSTM LMs 

implementing L2ers’ English learning can learn 

about implicit syntactic relationship: that is, the 

filler–gap dependency. 

Building the three L1, L2, and L3 LMs, we 

concentrated on the filler-gap dependency tasks 

to investigate the grammatical ability of neural 

language models trained on English sentences that 

different groups of learners learn English with. We 

showed that the L1 model can effectively track 

syntactic structure involved in the filler-gap 

dependency. Using linear mixed-effects models we 

went on to demonstrate that there are significant 

differences between the three models in light of 

the restrictions on filler-gap dependency. 

Particularly, we found that for the L3 model there 

was a significant difference between Long and 

Short wh-condition of filler–gap dependency. By 

contrast, for the L2 model there was no significant 

difference between the two conditions of Case 1 

and Case 2.

In essence, investigating whether LSTM LMs are 

sensitive to different contexts involving filler–gap 

dependency, we showed that the language models 

display sensitivity to some but not all of the 

contexts at issue. Given the study reported in this 

paper, two issues are pending for future study. 

Since LMs are data-driven, we need to examine in 

greater details how the size of training data affects 

the ability of an LM to process language. Second, 

since the introduction of LSTM, other more 

effective algorithms like BERT and three versions 

of GPT have been introduced and their 

performances have been evaluated seriously. In 

this milieu, it is worth investigating how much the 

LMs built on more recent algorithms can 

contribute to understanding L2 language 

processing as well as L1 language processing. 

ACKNOWLEDGEMENT

This work was supported by 2020 Shinhan 

Univ. Research Grant.

REFERENCES

[1] J. L. Elman, “Distributed representations, simple recurrent 

networks, and grammatical structure,” Machine learning, Vol. 

7(2-3), pp. 195-225, Sep 1991.

[2] Y. Goldberg, “Neural network methods for natural language 

processing,” Synthesis lectures on Human language 

Technologies, Vol. 10(1), pp. 1-309, Apr 2017.

[3] S. Hochreiter and S. Jurgen, “Long short-term memory,” Neural 

Computation, Vol. 9(8), pp. 1735-1780, Nov 1997.

[4] E. Kim, “Sentence Comprehension with an LSTM Language 

Model,” Journal of Digital Contents Society, Vol, 19(12), pp. 

2393-2401, Dec 2018.

[5] T. Linzen, E. Dupoux, and Y. Goldberg, “Assessing the ability 

of LSTMs to learn syntax-sensitive dependencies,” Transactions 

of the Association for Computational Linguistics, Vol. 4, pp. 

521-535, Dec 2016.

[6] K. Gulordava, P. Bojanowski, E. Grave, T. Linzen, and M. Baroni, 

“Colorless green recurrent networks dream hierarchically,” 

NAACL-HLT, pp. 1195-1205, Jun 2018.

[7] E. Wilcox, R. Levy, T. Morita, and R. Futell, “What do RNN 

Language Models Learn about Filler-Gap Dependencies?,” ACL 

Anthology, Proceedings of the 2018 EMNLP Workshop 

Blackbox NLP: Analyzing and Interpreting Neural Networks for 

NLP, pp. 211-221, Aug 2019.

[8] A. Kuncoro, C. Dyer, J. Hale, D. Yogatama, S. Clark, and P. 

Blunsom, “LSTMs can learn syntax-sensitive dependencies well, 

but modeling structure makes them better,” Computational 

Linguistics, Vol. 1, pp. 1426–1436, Aug 2018.

[9] K. Tran, A. Bisazza, and C. Monz, “The importance of being 

recurrent for modeling hierarchical structure,” In Proceedings of 

the 2018 Conference on Empirical Methods in Natural Language 

Processing, Aug 2018.

[10] J. Hale, “Uncertainty about the rest of the sentence,” Cognitive 

Science, Vol. 30(4), pp. 609–642, Jul 2006.

[11] J. Hale, “A probabilistic Earley parser as a psycholinguistic 

model,” Proceedings of the Second meeting of the North 

American Chapter of the Association for Computational 

Linguistic and Language Technologies, pp. 1-8, Jun 2001. 

[12] R. Levy, “Expectation-based syntactic comprehension,” 

Cognition, Vol. 106(3), pp. 1126-1177, Mar 2008.

[13] R.H. Baayen, D.J. Davidson, and D.M. Bates, “Mixed-effects 



40   Journal of The Korea Society of Computer and Information 

modeling with crossed random effects for subjects and items,” 

Journal of memory and language, Vol. 59(4), pp. 390-412, Mar 

2008.

[14] E. Kim, M. Park, and W. Chung, “On Korean English L2ers’ 

processing of wh-filler-gap dependencies: An ERP study,” 

Language and Information , Vol. 21(3), pp. 1-24, Nov 2017.

[15] E. Kim, “A Deep Learning-based Article- and Paragraph-level 

Classification,” The Journal of the Korea Society of Computer 

and Information, pp. 31-41, Nov 2018.

[16] E. Kim, “The Unsupervised Learning-based Language Modeling 

of Word Comprehension in Korean,” The Journal of the Korea 

Society of Computer and Information, pp. 41-49, Nov 2019.

Authors

Euhee Kim received the M.S. degrees in 

Computer Engineering from Dongguk 

University, Korea, in 2002 and Ph.D. 

degrees in Mathematics from The University 

of Connecticut, U.S.A in 1995.

Dr. Kim is currently an associate Professor in the 

Department of Computer Science & Engineering at Shinhan 

University. She is interested in AI, NLP and Big Data 

computing.


