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Abstract 

 

Recurrent neural network (RNN) architectures have been used for language modeling (LM) 

tasks that require learning long-range word or character sequences. However, the RNN 

architecture is still suffered from unstable gradients on long-range sequences. To address the 

issue of long-range sequences, an attention mechanism has been used, showing state-of-the-

art (SOTA) performance in all LM tasks. A differentiable neural computer (DNC) is a deep 

learning architecture using an attention mechanism. The DNC architecture is a neural network 

augmented with a content-addressable external memory. However, in the write operation, 

some information unrelated to the input word remains in memory. Moreover, DNCs have been 

found to perform poorly with low numbers of weight parameters. Therefore, we propose a 

robust memory deallocation method using a limited retention vector. The limited retention 

vector determines whether the network increases or decreases its usage of information in 

external memory according to a threshold. We experimentally evaluate the robustness of a 

DNC implementing the proposed approach according to the size of the controller and external 

memory on the enwik8 LM task. When we decreased the number of weight parameters by 

32.47%, the proposed DNC showed a low bits-per-character (BPC) degradation of 4.30%, 

demonstrating the effectiveness of our approach in language modeling tasks. 

 

 

Keywords: Differentiable Neural Computer (DNC), Language Model (LM), Memory 
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1. Introduction 

A language model (LM) calculates the probability of the current word or character with a 

previous word or character sequence [1]. For the sequence 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑛), the probability 

of the LM is denoted as 𝑃(𝑆).  

 

𝑃(𝑆) = (𝑠1, 𝑠2, … , 𝑠𝑛),                 (1) 

 

where n is the sequence length of S. When the number of elements in the word or character 

history (𝑠1, 𝑠2, … , 𝑠𝑛−1) increases, it is difficult to estimate the probability for the current word 

or character 𝑠𝑛, because the word or character history will not appear in the text. Therefore, 

Markov assumption is applied to the LM to estimate 𝑃(𝑠𝑛|𝑠1, 𝑠2, … , 𝑠𝑛−1). The sequence 

length affects to the current word or character 𝑠𝑛 is (𝑛 − 1). 

For modelling LMs, recurrent neural network (RNN) architectures have shown high 

performance, because a recurrent hidden layer maintain context of long-range word sequences. 

Especially, a long short-term memory (LSTM) has been successful in modelling context 

dependent information [2]. The LSTM is a hidden node consists of memory cells and three 

gates that maintain context dependent information over time. The LSTM has been proposed 

to prevent vanishing and exploding gradients problems associated with RNN architectures. 

However, previous works showed that the LSTM are still suffered from unstable gradients on 

long-range sequences consist of more than 100-200 words or characters. To address this issue, 

training tricks of RNN architecture, such as gradient clipping or layer-wise normalization, are 

used. 

For training deep learning models with long-range sequences, an attention mechanism has 

been used. The attention mechanism is an effective method for selecting important information 

on longer sequences. It supports deep learning models to obtain information of how models 

attend to different blocks of input sequences [3]. One of the most widely used attention-based 

model is the Transformer, and it outperforms LSTM-based LMs [4]. The Transformer is 

composed of an encoding component and decoding component. The encoding component is a 

stack of encoder blocks and the decoding component is a stack of decoder blocks. The 

encoder’s input sequence is used as an input of a self-attention layer. This layer allows the 

encoder to address context in the input sequence. An output of the self-attention layer is used 

as input of a feed-forward neural network. In the decoder block, an encoder-decoder attention 

layer is added. The encoder-decoder attention layer supports the decoder focus on appropriate 

contexts in the input sequence. However, the Transformer splits long-range input sequence 

into fixed size chunks. It causes the context fragmentation problem [5]. 

Another attention-based deep learning models are a differentiable neural computer (DNC). 

The DNC architecture is a neural network augmented with a content-addressable external 

memory [6]. In the DNC, a neural network is a controller, and a 𝑁 × 𝑀 matrix is the external 

memory (N is the number of vectors in the external memory and M is a dimension of vectors 

in the external memory). The memory attention mechanism of the DNC decides where 

information is stored in the external memory and maintains the order of sequences through a 

temporal link. In the experiments, the DNC showed a performance improvement on the bAbI 

question-answering task, graph traversal, and block puzzle problems. Recently, the DNC-

based LM have been proposed. In previous works, the DNC showed perplexity (PPL) to 98.6 

on the word-level Penn Treebank (PTB) dataset [7]. It exhibited better performance than deep 

neural network (DNN) and LSTM-based LMs, but lower performance than the Transformer-

based LM.  
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However, in the write operation, some information unrelated to the input word remains in 

memory [8]. For memory deallocation, an erase vector is multiplied with the external memory 

at the previous time-step, and then, the current external memory is generated by adding 

deallocated external memory to a multiplication of an attention vector and input vector. In the 

write operation, if a i-th selected address of the memory is deallocated, the i-th index of the 

erase vector should be 1. The vanilla DNC generates the erase vector with sigmoid functions. 

It causes that the element of the erase vector can only be 1 when an input of the sigmoid 

function is infinity. Also, the DNC architecture have been shown performance degradation 

with low numbers of weight parameters in the write operation, because of poor memory 

deallocation. 

In this paper, we present a robust memory deallocation method using a retention vector. 

The retention vector determines whether the DNC increases or decreases its usage of 

information in external memory. It indicates a retention ratio for information at each memory 

address. In the vanilla DNC, the retention vector is only used to generate the attention vector 

in the write operation. Therefore, while the retention vector is updated, information of the 

currently accessed memory address is not deallocated with the retention vector and remain in 

the external memory at all time-steps although this information is not related to current input 

sequence. It causes low robustness of memory deallocation in the write operation. Our 

proposed method selects the minimum of elements in the retention vector. The selected 

minimum element is converted to 0 using a threshold value generated from a threshold gate. 

Next, the previous external memory is multiplied by the proposed retention vector.  

We evaluated the proposed method on enwik8 benchmark LM task. First, we evaluated 

performance of the DNC using the proposed method compared with the vanilla DNC and 

Transformer. Second, we evaluated robustness of the proposed approach according to the size 

of the controller and external memory on the enwik8 LM task. 

The rest of our paper is organized as follows. Section 2 reviews previous works on LMs 

using deep learning models. Section 3 describes the write operation of the vanilla DNC 

architecture. Section 4 explains our proposed method in more detail. Section 4 describes 

experimental environments and results, and Section 5 concludes our paper.  

2. Previous Works 

In the RNN-based LM, to estimate the current word or character, a recurrent hidden layer is 

used to serve the role of memory through recurrence [9]. The memory ability of the recurrent 

hidden layer can learn from the first word or character to the n-th word or character. However, 

the recurrent hidden layer trained in the previous time-step is gradually distorted by newly 

input sequence as the time-step progresses [10]. The RNN is updated with summation of 

information stored in the recurrent hidden layer in every time-step and current input word or 

character. As a result, although the RNN-based LM can store a short sequence containing 

short-term context information, it is difficult to store long-range sequence including long-term 

context information.  

For modelling long-term context information, the LSTM has been adopted to the RNN-

based LM [11]. The LSTM has memory cells, so it can store context information in every 

time-step [12]. Memory cells of the LSTM are updated as follows: 

 

𝑚𝑐𝑡 = 𝑓𝑔𝑡𝑚𝑐𝑡−1 + 𝑖𝑔𝑡(𝑊𝑥,𝑚𝑐𝑥𝑡 + 𝑊ℎ𝑜,𝑚𝑐ℎ𝑜𝑡−1 + 𝑏𝑚𝑐),    (2) 
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where 𝑚𝑐𝑡 is a value of the memory cell at time-step t, 𝑚𝑐𝑡 is a value of the memory cell 

at time-step (𝑡 − 1), 𝑖𝑔𝑡 is a value of an input gate at time-step t, 𝑓𝑔𝑡 is a value of an forget 

gate at time-step t, ℎ𝑜𝑡−1 is a vector of a hidden layer at time-step (𝑡 − 1), 𝑊𝑥,𝑚𝑐 is a weight 

matrix between an input vector 𝑥𝑡  and the memory cell at time-step t, 𝑊ℎ𝑜,𝑚𝑐  is a weight 

matrix between the hidden layer and the memory cell at time (𝑡 − 1), and 𝑏𝑚𝑐 is a value of 

bias for the memory cell. Depending on the context, the forget gate retains or deletes the value 

of 𝑚𝑐𝑡−1 which stores the previous input sequence from time-step 0 to (𝑡 − 1). The LSTM 

achieved a higher performance than the RNN in LM tasks, but previous works showed that the 

LSTM are still suffered from unstable gradients on long-range sequences consist of more than 

200 words or characters [13]. Although training tricks [14], such as gradient clipping or layer-

wise normalization, are used, the LSTM cannot maintain long-term context information.  

The attention mechanism has been proposed to model long-term context information in LM 

tasks. The attention mechanism allows the deep learning model to focus on relevant 

information of an input sequence [15, 16]. The Transformer is the most common attention-

based deep learning model [4]. The Transformer is composed of an encoding component and 

decoding component. The encoding component is a stack of encoder blocks and the decoding 

component is a stack of decoder blocks. The encoder’s input sequence is used as an input of a 

self-attention layer. This layer allows the encoder to address context in the input sequence [17]. 

An output of the self-attention layer is used as input of a feed-forward neural network. In the 

decoder block, an encoder-decoder attention layer is added. The encoder-decoder attention 

layer supports the decoder focus on appropriate contexts in the input sequence [18].  

However, the Transformer splits long-range input sequence into fixed size chunks. It causes 

the context fragmentation problem. Previous works have been proposed to overcome the 

context fragmentation problem. Bidirectional encoder representations from Transformers 

(BERT) uses the encoder component of the Transformer to attend to bi-directional context 

information in a pre-training stage [19, 20]. In addition, a next sentence prediction method is 

adopted to BERT. This method predicts whether the generated sequence is the actual next 

sequence of the first sequence [21]. A generative pre-trained Transformer 2 (GPT-2) uses the 

decoder component of the Transformer [22, 23]. To model the GPT-2, an unsupervised pre-

training method using a LM and supervised fine-tuning method are adopted [24]. In [25], a 

generative pre-trained Transformer 3 (GPT-3) was proposed. The GPT-3 is an autoregressive 

model. It is composed of 175 billion trainable parameters. In the experiments, the GPT-3 

generated human-like text and showed the best performance when it uses an in-context few-

shot learning method.  

3. Differentiable Neural Computer 

3.1 Structural Overview of Differentiable Neural Computer 

Another attention-based deep learning models are a differentiable neural computer (DNC). 

Fig. 1 is a structural overview of the DNC architecture, which consists of the controller D and 

external memory EM. An input vector 𝑥𝑡  and R read vectors 𝑟𝑡−1
𝑖  at time-step (𝑡 − 1) are 

concatenated. A concatenated vector is used as inputs of the controller D. Two output vectors 

of the controller are generated: 1) a controller output vector 𝑑𝑜𝑡 and 2) an interface vector 𝐼𝑡. 

The controller output vector is equal to the output of a hidden layer in the deep learning model 

[26]. The interface vector 𝐼𝑡 determines the memory address accessed at time-step t to perform 

the read and write operation [27]. The DNC performs the write operation, so the converted 

concatenated vector is written on the external memory. The external memory is an 𝑁 × 𝑀 
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matrix, where N is the number of vectors in the external memory and M is the dimension of 

vectors in the external memory. After the write operation, the DNC performs the read 

operation. In the read operation, read vectors 𝑟𝑡
𝑖 are generated with the attention mechanism. 

These vectors are projected into a dimension of deep learning model T. The output vector of 

T is added to the controller output vector and then projected into a final output vector 𝑦𝑡. 

 

 
Fig. 1.  Overview of DNC 

 

In the read operation, a read attention vector 𝜔𝑡
𝑟,𝑖

 is used to generate read vectors. The i-th 

read vector 𝑟𝑡
𝑖 at time t is defined as (3). 

 

𝑟𝑡
𝑖 = 𝐸𝑀𝑡

Τ𝜔𝑡
𝑟,𝑖

,                    (3) 

 

where 𝜔𝑡
𝑟,𝑖

 is the read attention vector and 𝐸𝑀𝑡
Τ is a transposed external memory. A dimension 

of 𝜔𝑡
𝑟,𝑖

 is N, so a dimension of 𝑟𝑡
𝑖 is M. In the write operation, a write attention vector 𝜔𝑡

𝑟,𝑖
 

determines the memory address and information storage ratio. Unlike the read operation, the 

write operation also requires an erase vector 𝑒𝑡 (∈ [0,1]𝑀) and converted concatenation vector 

𝑣𝑡  (∈ R𝑀) at time-step t. The erase vector determines the ratio at which information is erased, 

before 𝑣𝑡 is stored in the external memory at time-step t. 𝑒𝑡 and 𝑣𝑡 are element of the interface 

vector.  

 

𝐸𝑀𝑡 = 𝐸𝑀𝑡−1 ∘ (𝑍𝑀 − 𝜔𝑡
𝑤𝑒𝑡

𝑇) + 𝜔𝑡
𝑤𝑣𝑡

𝑇,                (4) 

 

where 𝐸𝑀𝑡 and 𝐸𝑀𝑡−1 are the external memory at time-step t and (𝑡 − 1), respectively.  𝑍𝑀 

is a matrix of the same size as that of 𝐸𝑀𝑡. All elements of 𝑍𝑀 are 1. ∘ is the element-wise 

product. 𝑒𝑡
𝑇 is the transposed erase vector. 𝑣𝑡

𝑇 is the transposed converted concatenation vector. 

𝜔𝑡
𝑤 is the write attention vector. The dimension of 𝜔𝑡

𝑤 is N. 

3.2 Write Operation of Differentiable Neural Computer 

To determine 𝜔𝑡
𝑤 in (4), the DNC uses both a content-based addressing method and dynamic 

memory allocation method [28, 29]. A combination of the following three cases is performed 

with two methods: 1) when there is no write operation at time-step t, 2) when 𝜔𝑡
𝑤 is generated 
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by the dynamic memory allocation method, and 3) when 𝜔𝑡
𝑤 is generated by the content-based 

addressing. It can be shown as (5). 

 

𝜔𝑡
𝑤 = 𝑔𝑡

𝑤[𝑔𝑡
𝑎𝑎𝑡 + (1 − 𝑔𝑡

𝑎)𝐶(𝑀𝑡−1, 𝑘𝑡
𝑤, 𝛽𝑡

𝑤)],                           (5) 

 

where 𝑔𝑡
𝑤  (∈ [0,1]) is a write gate at time-step t, 𝑔𝑡

𝑎 (∈ [0,1]) is an allocation gate at time-

step t, 𝑎𝑡  (∈ 𝑅𝑁) is an allocation weighting vector at time-step t for the dynamic memory 

allocation, and 𝐶(𝑀𝑡−1, 𝑘𝑡
𝑤, 𝛽𝑡

𝑤) (∈ 𝑅𝑁)  is a content-based addressing vector. The write gate 

𝑔𝑡
𝑤 determines the degree to which the write operation is performed or not. It is an element of 

the interface vector. The allocation gate 𝑔𝑡
𝑎  is used as an interpolation factor between the 

dynamic memory allocation method and content-based addressing. It is also an element of the 

interface vector.  

The allocation weighting vector 𝑎𝑡 determines the degree to which memory addresses are 

allocated [30, 31]. Assume that the external memory consists of 5 memory addresses and a 

first memory address can be allocated, then 𝑎𝑡 = [1; 0; 0; 0; 0]. To generate 𝑎𝑡, a usage vector 

𝑢𝑡  (∈ [0,1]𝑁)  is calculated. 𝑢𝑡  determines whether to increase or decrease usage of 

information stored in the i-th external memory address. If usage of information stored in the i-

th memory address is increased, it signifies that read operations will be performed to the i-th 

memory address at later time-steps when the write operation is performed to i-th memory 

address at time-step (𝑡 − 1). In contrast, if usage of information stored in the i-th memory 

address is decreased, there were no write operations performed to i-th memory address at time-

step (𝑡 − 1). It also means that the degree to which write operations are performed to i-th 

memory address in layer time-steps is gradually reduced and the converted concatenation 

vector is stored in i-th memory address if the controller reads information from the i-th memory 

address.  

The usage vector 𝑢𝑡  is generated by a retention vector 𝜓𝑡 (∈ [0,1]𝑁). 𝜓𝑡  determines a 

retention degree of information stored in each memory address [32]. If 𝜓𝑡[𝑖] = 0, it implies 

that information stored in the i-th external memory address will not be maintained. In the DNC, 

information that is read recently cannot be used to perform read operations because this 

information is the previous information. If 𝜓𝑡[𝑖] = 1, it implies that information stored in the 

i-th external memory address have to be maintained because this information is not read by 

the DNC, recently. The usage vector uses 𝜓𝑡 to select the external memory address and shows 

the lowest usage in memory deallocation. 𝜓𝑡 is defined as (6) 

 

𝜓𝑡 = ∏ (1 − 𝑓𝑔𝑡
𝑖𝑤𝑡−1

𝑟,𝑖 )𝑅
𝑖=1 ,                                          (6) 

 

where 𝑤𝑡−1
𝑟,𝑖

 is the read attention vector at time-step (𝑡 − 1), 𝑓𝑔𝑡
𝑖  (∈ [0,1]) is a free gate, and 

R is the number of read attention vectors. The free gate is an element of the interface vector. 

It determines to guarantee the degree that information in the external memory can be 

maintained after read operations are performed. Therefore, 𝑢𝑡 using 𝜓𝑡 is defined as (7). 

 

𝑢𝑡 = (𝑢𝑡−1 + 𝜔𝑡−1
𝑤 − 𝑢𝑡−1 ∘ 𝜔𝑡−1

𝑤  ) ∘ 𝜓𝑡,                          (7) 

 

where 𝑢𝑡−1 is the usage vector at time-step (𝑡 − 1), 𝜔𝑡−1
𝑤  is the write attention vector at time-

step (𝑡 − 1), and 𝜓𝑡 is the retention vector at time-step t. 𝑢𝑡−1, 𝜔𝑡−1
𝑤 , and 𝜓𝑡 are real-value 

vectors (∈ [0,1]𝑁).  
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Finally, the allocation weighting vector 𝑎𝑡 is defined as (8). 

 

𝑎𝑡[𝜙𝑡[𝑗]] = (1 − 𝑢𝑡[𝜙𝑡[𝑗]]) ∏ 𝑢𝑡[𝜙𝑡[𝑖]]
𝑗−1
𝑖=1 ,                             (8) 

 

where 𝜙𝑡 (∈ R𝑁) is a free list at time t, 𝑢𝑡 is the usage vector at time (𝑡 − 1), and 𝑎𝑡 is the 

allocation weighting vector at time t. It defined as ascending order of 𝑢𝑡 from an index of 𝑢𝑡. 

The index of 𝑢𝑡 sorted in ascending order using each element of 𝑢𝑡, because 𝑎𝑡 sequentially 

accesses the index of 𝑢𝑡 sorted by 𝜙𝑡, in which the first index of 𝑢𝑡 is considered to be the 

memory address with the smallest usage. For example, if 𝑢𝑡 = [0; 0.9; 0.4; 0.7], then 𝜙𝑡 =
[0; 2; 3; 1]. 

4. Differentiable Neural Computer Using Limited Retention Vector-
based Memory Deallocation  

In the write operation, the retention vector 𝜓𝑡 only affects to the usage vector 𝑢𝑡, but not the 

external memory. That is, while a vector of the external memory currently accessed by the 

updated usage vector, the vector of the currently accessed memory address is not deallocated 

and remain. Therefore, in the read operation, the vector has not been deallocated can be 

accessed and affected to read vectors. As an example, assume that the DNC is trained on the 

question-answering task and a story “John is at the playground. There is a soccer ball at Bob’s 

house. John picks up the soccer ball.” is given. The question is “Who picked up the soccer 

ball?”. In this example, because Bob’s house also has information “soccer ball,” the sentence 

“There is a soccer ball at Bob’s house” is unnecessary information that must be deleted from 

the external memory. If the DNC does not properly perform memory deallocation, it may 

provide the wrong answer. 

Previous works have been proposed to solve the above problem with the retention vector. 

Their proposed method is that the external memory at time-step (𝑡 − 1) is multiplied by the 

retention vector. It is defined as (9). 

 

𝐸𝑀𝑡 = 𝐸𝑀𝑡−1 ∘ 𝜓𝑡1𝑇 ∘ (𝑍𝑀 − 𝜔𝑡
𝑤𝑒𝑡

𝑇) + 𝜔𝑡
𝑤𝑣𝑡

𝑇,                           (9) 

 

where 𝐸𝑀𝑡 and 𝐸𝑀𝑡−1 are the external memory at time-step t and (𝑡 − 1), respectively. 𝜓𝑡 is 

the retention vector at time-step t, 1𝑇 is the transposed vector. All elements of 1𝑇 are 1. 𝑍𝑀 is 

a matrix of the same size as that of 𝐸𝑀𝑡. All elements of 𝑍𝑀 are 1. 𝜔𝑡
𝑤 is the write attention 

vector at time-step t, 𝑒𝑡
𝑇  is the transposed erase vector. 𝑣𝑡

𝑇  is the transposed converted 

concatenation vector. 𝜓𝑡1𝑇 is defined as the same matrix as the external memory; thus, all 

elements of 𝐸𝑀𝑡−1 are multiplied to 𝜓𝑡 . However, despite some information stored in the 

external memory is no longer needed, their method cannot definitely deallocate unnecessary 

information from the external memory. To definitely deallocate unnecessary information, an 

element of the retention vector has to be 0. 

To address this issue, we proposed limited retention vector-based memory deallocation 

(LRV-DNC). The proposed method converts the minimum of elements in the retention vector 

to 0 according to a threshold. The pseudo algorithm for the proposed method is illustrated in 

Fig. 2. The detailed explanation of Fig. 2 is as follows:  

 

 

 



844                                                     Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention  
Vector-based Memory Deallocation in Language Model 

 

 

1. Search the minimum of elements in the retention vector. The proposed method selects 

multiple elements if they are minimum. 

 

2. If the output value of a forget gate is less than the threshold, then the proposed method 

converts selected elements of the retention vector to 0. If not, it does not convert.  

 

3. The retention vector generated from 2 is multiplied to the external memory at time-step 

(𝑡 − 1) 

 

In the stage 2, the forget gate 𝑔𝑡
𝜓𝑡  (∈ [0,1]) is an element of the interface vector. 𝑔𝑡

𝜓𝑡 

determines a decision boundary to which the minimum of elements in the retention vector is 

converted to 0 or not according to the threshold 𝑇 (∈ [0,1]). The threshold T is defined as 

handicraft value, so it has to be decided before training the DNC. The limitation of our 

proposed DNC architecture is as follows: 1) To find the minimum of elements in the retention 

vector, search algorithms are needed. We use a binary search algorithm. However, in the worst 

case, the time complexity of the binary search algorithm is 𝑂(𝑁) (N is the number of elements 

in the retention vector). 2) The threshold T is defined as handicraft value. Therefore, if pre-

trained DNC architecture is used to another LM task, T has to be modified.  

 

 
 

Fig. 2.  Pseudo algorithm for the proposed memory deallocation 
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5. Experiments and Discussion  

The proposed LRV-DNC was evaluated on the enwik8 LM task. In Section 5.1, we describe 

experimental environment. In Section 5.2, we compare the proposed LRV-DNC-based LM 

with the Transformer and vanilla DNC. In Section 5.3, we evaluated robustness of the LRV-

DNC-based LM. 

5.1 Experimental Environment  

The enwik8 LM task dataset consists of 100M characters. Its domain is unprocessed Wikipedia 

data. We split the dataset into 90, 5, and 5M characters, respectively, for the train, validation, 

and test data. The number of characters in the enwik8 LM task was 206, so we used a 1-of-|𝑉| 
vector as an input of all LMs. Each experiment was performed as 3-fold validation for 

justifying our experiments.   

We used bits-per-character (BPC) as an evaluation metric. BPC is the average number of 

bits (a unit of entropy) for encoding a character. In the experiments, BPC is defined as 

𝑙𝑜𝑠𝑠/log(2). A server specification was as follows: a 2.20GHz Intel Xeon Gold 5120 CPU 

and two Nvidia V100 GPUs.  

5.2 The enwik8 LM Task 

5.2.1 Experimental Setup 

The baseline was the LSTM-based LM from [33]. The Transformer-based LM from [5] was 

considered as the SOTA model. We implemented the vanilla DNC-based LM with PyTorch. 

The controller is the LSTM. In the controller, the number of LSTM hidden layers was 3, and 

the number of LSTM hidden nodes was 1024. The number of vectors in the external memory 

was 128. The dimension of each vector in the external memory was 256. The learning rate 

initialized at 1 × 10-3. To reduce the learning rate, a scheduler with a plateau objective function 

was used. The weight decay was 1 × 10-7. The length of the back-propagation to time (BPTT) 

was 120. The batch size was 20.  

We also implemented the previous memory deallocation method using the retention vector 

(RV-DNC) and our proposed LRV-DNC-based LM with PyTorch. Hyper-parameters of the 

RV-DNC-based LM and LRV-DNC-based LM are equal to that of the vanilla DNC-based LM. 

In addition, in LRV-DNC-based LM, the threshold was 0.5. 

5.2.2 Experimental Results 

Table 1 shows the BPC results of the LRV-DNC-based LMs. We evaluated the BPC results 

of the proposed DNC-based LM according to the number of read vectors. The LRV-DNC-

based LM using 4 read vectors showed the best BPC results in the DNC-based LMs, with BPC 

of 1.3847. Although the BPC result of the Transformer-based LM was a SOTA result (BPC 

was 1.1120), our proposed method showed a relative improvement of 0.47% compared with 

the vanilla DNC in terms of BPC. In addition, our LRV-DNC-based LM showed a relative 

improvement of 0.27% compared with the previous RV-DNC-based LM. 
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Table 1. BPC results of the LRV-DNC-based LMs 

Model 
No. of weight 

parameters 

No. of read 

vectors 

BPC 

Validation Test 

LSTM 18.1 M - - 1.4610 

Transformer 44.1 M - - 1.1120 

Vanilla DNC 42.5 M 4 1.3959 1.3912 

RV-DNC 42.5 M 4 1.3892 1.3885 

LRV-DNC 

38.9 M 1 1.3911 1.3908 

40.1 M 2 1.3882 1.3879 

41.4 M 3 1.3860 1.3856 

42.5 M 4 1.3851 1.3847 

 

The discussion for Table 1 is as follows: (1) We found that BPC was better when the LRV-

DNC-based LM used more read vectors. The LRV-DNC-based LM using 4 read vectors 

showed a relative improvement of 0.44% compared with the LRV-DNC-based LM using a 

one read vector in terms of BPC. (2) Although the vanilla DNC and RV-DNC-based LM used 

4 read vectors, the LRV-DNC-based LM showed the best BPC result. It showed a relative 

improvement of 0.27-0.47% compared with other DNC-based LMs. It means that our 

proposed DNC outperformed to previous DNC architecture in the LM task.  

5.3 Robustness of LRV-DNC-based LM 

5.3.1 Experimental Setup 

We also used the LSTM-based LM as the baseline, and the Transformer-based LM as the 

SOTA model. The hyper-parameters of vanilla DNC and LRV-DNC-based LMs were equal 

to Section 5.2.1. In experiments for robustness evaluation, two types of experiments were 

performed for analyzing robustness: 1) the size of the external memory and 2) the size of the 

controller. 

5.3.2 Experimental Results 

Table 2 and Table 3 shows the BPC results of the vanilla DNC-based LMs according to the 

different size of the external memory and controller, respectively. In Table 2, although the 

size of the external memory is decreased, the vanilla DNC-based LM using 32×32 external 

memory demonstrated a relative degradation of 1.66 % compared with the vanilla DNC-based 

LM using 128×256 external memory. In addition, in Table 3, although the size of the 

controller is decreased, the vanilla DNC-based LM using 32 × 32 external memory 

demonstrated a relative degradation of 4.56 % compared with the vanilla DNC-based LM 

using 128×256 external memory. 

 
Table 2. BPC results of the vanilla DNC-based LMs according to the different size  

of the external memory on the enwik8 LM task 

Model 

No. of 

weight 

parameters 

No. of 

read 

vectors 

No. of 

vectors in 

the external 

memory 

Dim. of 

vectors in the 

external 

memory 

BPC 

Val Test 

LSTM 18.1 M -   - 1.4610 

Transformer 44.1 M -   - 1.1120 

Vanilla 

DNC 

30.5 M 1 
32 32 

1.4192 1.4181 

30.8 M 2 1.4188 1.4179 
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31.1 M 3 1.4175 1.4172 

31.5 M 4 1.4169 1.4163 

30.9 M 1 

64 64 

1.4151 1.4147 

31.5 M 2 1.4135 1.4128 

32.2 M 3 1.4130 1.4123 

32.8 M 4 1.4126 1.4119 

31.7 M 1 

128 128 

1.4123 1.4117 

32.9 M 2 1.4121 1.4112 

34.2 M 3 1.4124 1.4115 

35.3 M 4 1.4097 1.4098 

42.5 M 4 128 256 1.3959 1.3912 

 

The discussion for Table 2 and Table 3 is as follows: (1) In Table 2, the vanilla DNC using 

2 read vectors showed higher performance than that of the vanilla DNC using 3 read vectors 

when the size of the external memory is 128×128. However, when the vanilla DNC used 

32×32 and 64×64 size of the external memory, we found that BPC was better when the vanilla  

DNC-based LM used more read vectors. (2) Despite the number of weight parameters in the 

vanilla DNC-based LM is smaller than that of the LSTM-based LM in Table 3, the vanilla 

DNC-based LM showed higher performance than the LSTM-based LM. It means that the DNC 

architecture can be train with long-range context, although the LSTM cannot train with long-

range context. 

 
Table 3. BPC results of the vanilla DNC-based LMs according to the different size  

of the controller on the enwik8 LM task 

Model 

No. of 

weight 

parameters 

No. of 

read 

vectors 

No. of 

vectors in 

the external 

memory 

Dim. of 

vectors in the 

external 

memory 

BPC 

Val Test 

LSTM 18.1 M -   - 1.4610 

Transformer 44.1 M -   - 1.1120 

Vanilla 

DNC 

13.8 M 1 

32 32 

1.4595 1.4588 

14.1 M 2 1.4585 1.4582 

14.4 M 3 1.4579 1.4570 

14.7 M 4 1.4563 1.4567 

14.2 M 1 

64 64 

1.4556 1.4553 

14.8 M 2 1.4547 1.4544 

15.4 M 3 1.4536 1.4535 

16.0 M 4 1.4531 1.4532 

15.0 M 1 

128 128 

1.4525 1.4518 

16.2 M 2 1.4517 1.4511 

17.4 M 3 1.4504 1.4500 

18.6 M 4 1.4479 1.4481 

42.5 M 4 128 256 1.3959 1.3912 

 

Table 4 and Table 5 shows the BPC results of the proposed LRV-DNC-based LMs 

according to the different size of the external memory and controller, respectively. In Table 4, 

although the size of the external memory is decreased, the LRV-DNC-based LM using 32×32 

size of the external memory demonstrated a relative degradation of 1.48 % compared with the 

LRV-DNC-based LM using 128×256 size of the external memory. In addition, in Table 5, 

although the size of the controller is decreased, the LRV-DNC-based LM using 32×32 size of 
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the external memory demonstrated a relative degradation of 4.30 % compared with the LRV-

DNC-based LM using 128×256 size of the external memory. 

The discussion for Table 4 and Table 5 is as follows: (1) A degradation rate of the LRV-

DNC-based LM using 32×32 size of the external memory was lower than that of the vanilla 

DNC-based LM using 32×32 size of the external memory. Although both DNC-based LMs 

had same number of weight parameters, the proposed LRV-DNC was more robust than the 

vanilla DNC. Therefore, the vanilla DNC was improved with the proposed LRV method as an 

aspect of robustness. (2) In Table 4, we found that BPC was better when the LRV-DNC-based 

LM used more read vectors. This result was differed to Table 2. (3) Despite the number of 

weight parameters in the LRV-DNC-based LM is smaller than that of the LSTM-based LM in 

Table 5, the vanilla DNC-based LM showed higher performance than the LSTM-based LM. 

It means that the proposed LRV-DNC architecture can be train with long-range context, 

although the LSTM cannot train with long-range context, although the LRV-DNC showed 

lower performance than the Transformer. 

 
Table 4. BPC results of the LRV-DNC-based LMs according to the different size  

of the external memory on the enwik8 LM task 

Model 

No. of 

weight 

parameters 

No. of 

read 

vectors 

No. of 

vectors in 

the external 

memory 

Dim. of 

vectors in the 

external 

memory 

BPC 

Val Test 

LSTM 18.1 M -   - 1.4610 

Transformer 44.1 M -   - 1.1120 

LRV-DNC 

30.5 M 1 

32 32 

1.4056 1.4050 

30.8 M 2 1.4034 1.4029 

31.1 M 3 1.4011 1.4003 

31.5 M 4 1.3997 1.3992 

30.9 M 1 

64 64 

1.4015 1.4018 

31.5 M 2 1.4003 1.4001 

32.2 M 3 1.3990 1.3997 

32.8 M 4 1.3982 1.3979 

31.7 M 1 

128 128 

1.3997 1.4005 

32.9 M 2 1.3984 1.3985 

34.2 M 3 1.3965 1.3972 

35.3 M 4 1.3942 1.3935 

42.5 M 4 128 256 1.3851 1.3847 

 
Table 5. BPC results of the LRV-DNC-based LMs according to the different size  

of the controller on the enwik8 LM task 

Model 

No. of 

weight 

parameters 

No. of 

read 

vectors 

No. of 

vectors in 

the external 

memory 

Dim. of 

vectors in the 

external 

memory 

BPC 

Val Test 

LSTM 18.1 M -   - 1.4610 

Transformer 44.1 M -   - 1.1120 

LRV-DNC 

13.8 M 1 

32 32 

1.4446 1.4439 

14.1 M 2 1.4438 1.4442 

14.4 M 3 1.4413 1.4419 

14.7 M 4 1.4391 1.4383 

14.2 M 1 64 64 1.4395 1.4397 
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14.8 M 2 1.4387 1.4382 

15.4 M 3 1.4362 1.4360 

16.0 M 4 1.4351 1.4362 

15.0 M 1 

128 128 

1.4375 1.4370 

16.2 M 2 1.4359 1.4362 

17.4 M 3 1.4345 1.4338 

18.6 M 4 1.4321 1.4316 

42.5 M 4 128 256 1.3851 1.3847 

6. Conclusion 

The vanilla DNC architecture has drawback in memory deallocation, because the vector of the 

currently accessed external memory address is not deallocated definitely. Therefore, in the 

read operation, the vector has not been deallocated can be accessed. It affects to read vectors, 

and causes performance degradation. To solve this issue, we proposed the memory 

deallocation method using the limited retention vector (LRV-DNC). The proposed method 

searches the minimum elements in the retention vector. These elements are converted to 0 if 

the output value of the forget gate is less than the handcraft threshold. The modified retention 

vector is multiplied to the external memory at time-step (𝑡 − 1). In the experiments, the LRV-

DNC-based LM showed a relative improvement of 0.27-0.47% compared with other DNC-

based LMs, although the Transformer-based LM showed the SOTA results. In addition, the 

LRV-DNC-based LM showed a relative degradation of 1.48-4.30%. These results were more 

robustness to the vanilla DNC-based LM. Therefore, the vanilla DNC can have higher 

robustness if it uses our proposed LRV method.  
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