
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, Mar. 2021 837

Copyright ⓒ 2021 KSII

This research was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2020R1F1A1076562).

http://doi.org/10.3837/tiis.2021.03.002 ISSN : 1976-7277

Robustness of Differentiable Neural
Computer Using Limited Retention Vector-
based Memory Deallocation in Language

Model

Donghyun Lee, Hosung Park, Soonshin Seo, Hyunsoo Son, Gyujin Kim, and Ji-Hwan Kim*
 Department of Computer Science and Engineering, Sogang University

35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea

[e-mail: {redizard, hosungpark, ssseo, sonhyunsoo, kgh3620, kimjihwan}@sogang.ac.kr]
*Corresponding author: Ji-Hwan Kim

Received December 31, 2020; revised February 20, 2021; accepted March 2, 2021;

published March 31, 2021

Abstract

Recurrent neural network (RNN) architectures have been used for language modeling (LM)

tasks that require learning long-range word or character sequences. However, the RNN

architecture is still suffered from unstable gradients on long-range sequences. To address the

issue of long-range sequences, an attention mechanism has been used, showing state-of-the-

art (SOTA) performance in all LM tasks. A differentiable neural computer (DNC) is a deep

learning architecture using an attention mechanism. The DNC architecture is a neural network

augmented with a content-addressable external memory. However, in the write operation,

some information unrelated to the input word remains in memory. Moreover, DNCs have been

found to perform poorly with low numbers of weight parameters. Therefore, we propose a

robust memory deallocation method using a limited retention vector. The limited retention

vector determines whether the network increases or decreases its usage of information in

external memory according to a threshold. We experimentally evaluate the robustness of a

DNC implementing the proposed approach according to the size of the controller and external

memory on the enwik8 LM task. When we decreased the number of weight parameters by

32.47%, the proposed DNC showed a low bits-per-character (BPC) degradation of 4.30%,

demonstrating the effectiveness of our approach in language modeling tasks.

Keywords: Differentiable Neural Computer (DNC), Language Model (LM), Memory

Deallocation, Retention Vector, Robustness

838 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

1. Introduction

A language model (LM) calculates the probability of the current word or character with a

previous word or character sequence [1]. For the sequence 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑛), the probability

of the LM is denoted as 𝑃(𝑆).

𝑃(𝑆) = (𝑠1, 𝑠2, … , 𝑠𝑛), (1)

where n is the sequence length of S. When the number of elements in the word or character

history (𝑠1, 𝑠2, … , 𝑠𝑛−1) increases, it is difficult to estimate the probability for the current word

or character 𝑠𝑛, because the word or character history will not appear in the text. Therefore,

Markov assumption is applied to the LM to estimate 𝑃(𝑠𝑛|𝑠1, 𝑠2, … , 𝑠𝑛−1). The sequence

length affects to the current word or character 𝑠𝑛 is (𝑛 − 1).

For modelling LMs, recurrent neural network (RNN) architectures have shown high

performance, because a recurrent hidden layer maintain context of long-range word sequences.

Especially, a long short-term memory (LSTM) has been successful in modelling context

dependent information [2]. The LSTM is a hidden node consists of memory cells and three

gates that maintain context dependent information over time. The LSTM has been proposed

to prevent vanishing and exploding gradients problems associated with RNN architectures.

However, previous works showed that the LSTM are still suffered from unstable gradients on

long-range sequences consist of more than 100-200 words or characters. To address this issue,

training tricks of RNN architecture, such as gradient clipping or layer-wise normalization, are

used.

For training deep learning models with long-range sequences, an attention mechanism has

been used. The attention mechanism is an effective method for selecting important information

on longer sequences. It supports deep learning models to obtain information of how models

attend to different blocks of input sequences [3]. One of the most widely used attention-based

model is the Transformer, and it outperforms LSTM-based LMs [4]. The Transformer is

composed of an encoding component and decoding component. The encoding component is a

stack of encoder blocks and the decoding component is a stack of decoder blocks. The

encoder’s input sequence is used as an input of a self-attention layer. This layer allows the

encoder to address context in the input sequence. An output of the self-attention layer is used

as input of a feed-forward neural network. In the decoder block, an encoder-decoder attention

layer is added. The encoder-decoder attention layer supports the decoder focus on appropriate

contexts in the input sequence. However, the Transformer splits long-range input sequence

into fixed size chunks. It causes the context fragmentation problem [5].

Another attention-based deep learning models are a differentiable neural computer (DNC).

The DNC architecture is a neural network augmented with a content-addressable external

memory [6]. In the DNC, a neural network is a controller, and a 𝑁 × 𝑀 matrix is the external

memory (N is the number of vectors in the external memory and M is a dimension of vectors

in the external memory). The memory attention mechanism of the DNC decides where

information is stored in the external memory and maintains the order of sequences through a

temporal link. In the experiments, the DNC showed a performance improvement on the bAbI

question-answering task, graph traversal, and block puzzle problems. Recently, the DNC-

based LM have been proposed. In previous works, the DNC showed perplexity (PPL) to 98.6

on the word-level Penn Treebank (PTB) dataset [7]. It exhibited better performance than deep

neural network (DNN) and LSTM-based LMs, but lower performance than the Transformer-

based LM.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 839

However, in the write operation, some information unrelated to the input word remains in

memory [8]. For memory deallocation, an erase vector is multiplied with the external memory

at the previous time-step, and then, the current external memory is generated by adding

deallocated external memory to a multiplication of an attention vector and input vector. In the

write operation, if a i-th selected address of the memory is deallocated, the i-th index of the

erase vector should be 1. The vanilla DNC generates the erase vector with sigmoid functions.

It causes that the element of the erase vector can only be 1 when an input of the sigmoid

function is infinity. Also, the DNC architecture have been shown performance degradation

with low numbers of weight parameters in the write operation, because of poor memory

deallocation.

In this paper, we present a robust memory deallocation method using a retention vector.

The retention vector determines whether the DNC increases or decreases its usage of

information in external memory. It indicates a retention ratio for information at each memory

address. In the vanilla DNC, the retention vector is only used to generate the attention vector

in the write operation. Therefore, while the retention vector is updated, information of the

currently accessed memory address is not deallocated with the retention vector and remain in

the external memory at all time-steps although this information is not related to current input

sequence. It causes low robustness of memory deallocation in the write operation. Our

proposed method selects the minimum of elements in the retention vector. The selected

minimum element is converted to 0 using a threshold value generated from a threshold gate.

Next, the previous external memory is multiplied by the proposed retention vector.

We evaluated the proposed method on enwik8 benchmark LM task. First, we evaluated

performance of the DNC using the proposed method compared with the vanilla DNC and

Transformer. Second, we evaluated robustness of the proposed approach according to the size

of the controller and external memory on the enwik8 LM task.

The rest of our paper is organized as follows. Section 2 reviews previous works on LMs

using deep learning models. Section 3 describes the write operation of the vanilla DNC

architecture. Section 4 explains our proposed method in more detail. Section 4 describes

experimental environments and results, and Section 5 concludes our paper.

2. Previous Works

In the RNN-based LM, to estimate the current word or character, a recurrent hidden layer is

used to serve the role of memory through recurrence [9]. The memory ability of the recurrent

hidden layer can learn from the first word or character to the n-th word or character. However,

the recurrent hidden layer trained in the previous time-step is gradually distorted by newly

input sequence as the time-step progresses [10]. The RNN is updated with summation of

information stored in the recurrent hidden layer in every time-step and current input word or

character. As a result, although the RNN-based LM can store a short sequence containing

short-term context information, it is difficult to store long-range sequence including long-term

context information.

For modelling long-term context information, the LSTM has been adopted to the RNN-

based LM [11]. The LSTM has memory cells, so it can store context information in every

time-step [12]. Memory cells of the LSTM are updated as follows:

𝑚𝑐𝑡 = 𝑓𝑔𝑡𝑚𝑐𝑡−1 + 𝑖𝑔𝑡(𝑊𝑥,𝑚𝑐𝑥𝑡 + 𝑊ℎ𝑜,𝑚𝑐ℎ𝑜𝑡−1 + 𝑏𝑚𝑐), (2)

840 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

where 𝑚𝑐𝑡 is a value of the memory cell at time-step t, 𝑚𝑐𝑡 is a value of the memory cell

at time-step (𝑡 − 1), 𝑖𝑔𝑡 is a value of an input gate at time-step t, 𝑓𝑔𝑡 is a value of an forget

gate at time-step t, ℎ𝑜𝑡−1 is a vector of a hidden layer at time-step (𝑡 − 1), 𝑊𝑥,𝑚𝑐 is a weight

matrix between an input vector 𝑥𝑡 and the memory cell at time-step t, 𝑊ℎ𝑜,𝑚𝑐 is a weight

matrix between the hidden layer and the memory cell at time (𝑡 − 1), and 𝑏𝑚𝑐 is a value of

bias for the memory cell. Depending on the context, the forget gate retains or deletes the value

of 𝑚𝑐𝑡−1 which stores the previous input sequence from time-step 0 to (𝑡 − 1). The LSTM

achieved a higher performance than the RNN in LM tasks, but previous works showed that the

LSTM are still suffered from unstable gradients on long-range sequences consist of more than

200 words or characters [13]. Although training tricks [14], such as gradient clipping or layer-

wise normalization, are used, the LSTM cannot maintain long-term context information.

The attention mechanism has been proposed to model long-term context information in LM

tasks. The attention mechanism allows the deep learning model to focus on relevant

information of an input sequence [15, 16]. The Transformer is the most common attention-

based deep learning model [4]. The Transformer is composed of an encoding component and

decoding component. The encoding component is a stack of encoder blocks and the decoding

component is a stack of decoder blocks. The encoder’s input sequence is used as an input of a

self-attention layer. This layer allows the encoder to address context in the input sequence [17].

An output of the self-attention layer is used as input of a feed-forward neural network. In the

decoder block, an encoder-decoder attention layer is added. The encoder-decoder attention

layer supports the decoder focus on appropriate contexts in the input sequence [18].

However, the Transformer splits long-range input sequence into fixed size chunks. It causes

the context fragmentation problem. Previous works have been proposed to overcome the

context fragmentation problem. Bidirectional encoder representations from Transformers

(BERT) uses the encoder component of the Transformer to attend to bi-directional context

information in a pre-training stage [19, 20]. In addition, a next sentence prediction method is

adopted to BERT. This method predicts whether the generated sequence is the actual next

sequence of the first sequence [21]. A generative pre-trained Transformer 2 (GPT-2) uses the

decoder component of the Transformer [22, 23]. To model the GPT-2, an unsupervised pre-

training method using a LM and supervised fine-tuning method are adopted [24]. In [25], a

generative pre-trained Transformer 3 (GPT-3) was proposed. The GPT-3 is an autoregressive

model. It is composed of 175 billion trainable parameters. In the experiments, the GPT-3

generated human-like text and showed the best performance when it uses an in-context few-

shot learning method.

3. Differentiable Neural Computer

3.1 Structural Overview of Differentiable Neural Computer

Another attention-based deep learning models are a differentiable neural computer (DNC).

Fig. 1 is a structural overview of the DNC architecture, which consists of the controller D and

external memory EM. An input vector 𝑥𝑡 and R read vectors 𝑟𝑡−1
𝑖 at time-step (𝑡 − 1) are

concatenated. A concatenated vector is used as inputs of the controller D. Two output vectors

of the controller are generated: 1) a controller output vector 𝑑𝑜𝑡 and 2) an interface vector 𝐼𝑡.

The controller output vector is equal to the output of a hidden layer in the deep learning model

[26]. The interface vector 𝐼𝑡 determines the memory address accessed at time-step t to perform

the read and write operation [27]. The DNC performs the write operation, so the converted

concatenated vector is written on the external memory. The external memory is an 𝑁 × 𝑀

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 841

matrix, where N is the number of vectors in the external memory and M is the dimension of

vectors in the external memory. After the write operation, the DNC performs the read

operation. In the read operation, read vectors 𝑟𝑡
𝑖 are generated with the attention mechanism.

These vectors are projected into a dimension of deep learning model T. The output vector of

T is added to the controller output vector and then projected into a final output vector 𝑦𝑡.

Fig. 1. Overview of DNC

In the read operation, a read attention vector 𝜔𝑡
𝑟,𝑖

 is used to generate read vectors. The i-th

read vector 𝑟𝑡
𝑖 at time t is defined as (3).

𝑟𝑡
𝑖 = 𝐸𝑀𝑡

Τ𝜔𝑡
𝑟,𝑖

, (3)

where 𝜔𝑡
𝑟,𝑖

 is the read attention vector and 𝐸𝑀𝑡
Τ is a transposed external memory. A dimension

of 𝜔𝑡
𝑟,𝑖

 is N, so a dimension of 𝑟𝑡
𝑖 is M. In the write operation, a write attention vector 𝜔𝑡

𝑟,𝑖

determines the memory address and information storage ratio. Unlike the read operation, the

write operation also requires an erase vector 𝑒𝑡 (∈ [0,1]𝑀) and converted concatenation vector

𝑣𝑡 (∈ R𝑀) at time-step t. The erase vector determines the ratio at which information is erased,

before 𝑣𝑡 is stored in the external memory at time-step t. 𝑒𝑡 and 𝑣𝑡 are element of the interface

vector.

𝐸𝑀𝑡 = 𝐸𝑀𝑡−1 ∘ (𝑍𝑀 − 𝜔𝑡
𝑤𝑒𝑡

𝑇) + 𝜔𝑡
𝑤𝑣𝑡

𝑇, (4)

where 𝐸𝑀𝑡 and 𝐸𝑀𝑡−1 are the external memory at time-step t and (𝑡 − 1), respectively. 𝑍𝑀

is a matrix of the same size as that of 𝐸𝑀𝑡. All elements of 𝑍𝑀 are 1. ∘ is the element-wise

product. 𝑒𝑡
𝑇 is the transposed erase vector. 𝑣𝑡

𝑇 is the transposed converted concatenation vector.

𝜔𝑡
𝑤 is the write attention vector. The dimension of 𝜔𝑡

𝑤 is N.

3.2 Write Operation of Differentiable Neural Computer

To determine 𝜔𝑡
𝑤 in (4), the DNC uses both a content-based addressing method and dynamic

memory allocation method [28, 29]. A combination of the following three cases is performed

with two methods: 1) when there is no write operation at time-step t, 2) when 𝜔𝑡
𝑤 is generated

842 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

by the dynamic memory allocation method, and 3) when 𝜔𝑡
𝑤 is generated by the content-based

addressing. It can be shown as (5).

𝜔𝑡
𝑤 = 𝑔𝑡

𝑤[𝑔𝑡
𝑎𝑎𝑡 + (1 − 𝑔𝑡

𝑎)𝐶(𝑀𝑡−1, 𝑘𝑡
𝑤, 𝛽𝑡

𝑤)], (5)

where 𝑔𝑡
𝑤 (∈ [0,1]) is a write gate at time-step t, 𝑔𝑡

𝑎 (∈ [0,1]) is an allocation gate at time-

step t, 𝑎𝑡 (∈ 𝑅𝑁) is an allocation weighting vector at time-step t for the dynamic memory

allocation, and 𝐶(𝑀𝑡−1, 𝑘𝑡
𝑤, 𝛽𝑡

𝑤) (∈ 𝑅𝑁) is a content-based addressing vector. The write gate

𝑔𝑡
𝑤 determines the degree to which the write operation is performed or not. It is an element of

the interface vector. The allocation gate 𝑔𝑡
𝑎 is used as an interpolation factor between the

dynamic memory allocation method and content-based addressing. It is also an element of the

interface vector.

The allocation weighting vector 𝑎𝑡 determines the degree to which memory addresses are

allocated [30, 31]. Assume that the external memory consists of 5 memory addresses and a

first memory address can be allocated, then 𝑎𝑡 = [1; 0; 0; 0; 0]. To generate 𝑎𝑡, a usage vector

𝑢𝑡 (∈ [0,1]𝑁) is calculated. 𝑢𝑡 determines whether to increase or decrease usage of

information stored in the i-th external memory address. If usage of information stored in the i-

th memory address is increased, it signifies that read operations will be performed to the i-th

memory address at later time-steps when the write operation is performed to i-th memory

address at time-step (𝑡 − 1). In contrast, if usage of information stored in the i-th memory

address is decreased, there were no write operations performed to i-th memory address at time-

step (𝑡 − 1). It also means that the degree to which write operations are performed to i-th

memory address in layer time-steps is gradually reduced and the converted concatenation

vector is stored in i-th memory address if the controller reads information from the i-th memory

address.

The usage vector 𝑢𝑡 is generated by a retention vector 𝜓𝑡 (∈ [0,1]𝑁). 𝜓𝑡 determines a

retention degree of information stored in each memory address [32]. If 𝜓𝑡[𝑖] = 0, it implies

that information stored in the i-th external memory address will not be maintained. In the DNC,

information that is read recently cannot be used to perform read operations because this

information is the previous information. If 𝜓𝑡[𝑖] = 1, it implies that information stored in the

i-th external memory address have to be maintained because this information is not read by

the DNC, recently. The usage vector uses 𝜓𝑡 to select the external memory address and shows

the lowest usage in memory deallocation. 𝜓𝑡 is defined as (6)

𝜓𝑡 = ∏ (1 − 𝑓𝑔𝑡
𝑖𝑤𝑡−1

𝑟,𝑖)𝑅
𝑖=1 , (6)

where 𝑤𝑡−1
𝑟,𝑖

 is the read attention vector at time-step (𝑡 − 1), 𝑓𝑔𝑡
𝑖 (∈ [0,1]) is a free gate, and

R is the number of read attention vectors. The free gate is an element of the interface vector.

It determines to guarantee the degree that information in the external memory can be

maintained after read operations are performed. Therefore, 𝑢𝑡 using 𝜓𝑡 is defined as (7).

𝑢𝑡 = (𝑢𝑡−1 + 𝜔𝑡−1
𝑤 − 𝑢𝑡−1 ∘ 𝜔𝑡−1

𝑤) ∘ 𝜓𝑡, (7)

where 𝑢𝑡−1 is the usage vector at time-step (𝑡 − 1), 𝜔𝑡−1
𝑤 is the write attention vector at time-

step (𝑡 − 1), and 𝜓𝑡 is the retention vector at time-step t. 𝑢𝑡−1, 𝜔𝑡−1
𝑤 , and 𝜓𝑡 are real-value

vectors (∈ [0,1]𝑁).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 843

Finally, the allocation weighting vector 𝑎𝑡 is defined as (8).

𝑎𝑡[𝜙𝑡[𝑗]] = (1 − 𝑢𝑡[𝜙𝑡[𝑗]]) ∏ 𝑢𝑡[𝜙𝑡[𝑖]]
𝑗−1
𝑖=1 , (8)

where 𝜙𝑡 (∈ R𝑁) is a free list at time t, 𝑢𝑡 is the usage vector at time (𝑡 − 1), and 𝑎𝑡 is the

allocation weighting vector at time t. It defined as ascending order of 𝑢𝑡 from an index of 𝑢𝑡.

The index of 𝑢𝑡 sorted in ascending order using each element of 𝑢𝑡, because 𝑎𝑡 sequentially

accesses the index of 𝑢𝑡 sorted by 𝜙𝑡, in which the first index of 𝑢𝑡 is considered to be the

memory address with the smallest usage. For example, if 𝑢𝑡 = [0; 0.9; 0.4; 0.7], then 𝜙𝑡 =
[0; 2; 3; 1].

4. Differentiable Neural Computer Using Limited Retention Vector-
based Memory Deallocation

In the write operation, the retention vector 𝜓𝑡 only affects to the usage vector 𝑢𝑡, but not the

external memory. That is, while a vector of the external memory currently accessed by the

updated usage vector, the vector of the currently accessed memory address is not deallocated

and remain. Therefore, in the read operation, the vector has not been deallocated can be

accessed and affected to read vectors. As an example, assume that the DNC is trained on the

question-answering task and a story “John is at the playground. There is a soccer ball at Bob’s

house. John picks up the soccer ball.” is given. The question is “Who picked up the soccer

ball?”. In this example, because Bob’s house also has information “soccer ball,” the sentence

“There is a soccer ball at Bob’s house” is unnecessary information that must be deleted from

the external memory. If the DNC does not properly perform memory deallocation, it may

provide the wrong answer.

Previous works have been proposed to solve the above problem with the retention vector.

Their proposed method is that the external memory at time-step (𝑡 − 1) is multiplied by the

retention vector. It is defined as (9).

𝐸𝑀𝑡 = 𝐸𝑀𝑡−1 ∘ 𝜓𝑡1𝑇 ∘ (𝑍𝑀 − 𝜔𝑡
𝑤𝑒𝑡

𝑇) + 𝜔𝑡
𝑤𝑣𝑡

𝑇, (9)

where 𝐸𝑀𝑡 and 𝐸𝑀𝑡−1 are the external memory at time-step t and (𝑡 − 1), respectively. 𝜓𝑡 is

the retention vector at time-step t, 1𝑇 is the transposed vector. All elements of 1𝑇 are 1. 𝑍𝑀 is

a matrix of the same size as that of 𝐸𝑀𝑡. All elements of 𝑍𝑀 are 1. 𝜔𝑡
𝑤 is the write attention

vector at time-step t, 𝑒𝑡
𝑇 is the transposed erase vector. 𝑣𝑡

𝑇 is the transposed converted

concatenation vector. 𝜓𝑡1𝑇 is defined as the same matrix as the external memory; thus, all

elements of 𝐸𝑀𝑡−1 are multiplied to 𝜓𝑡 . However, despite some information stored in the

external memory is no longer needed, their method cannot definitely deallocate unnecessary

information from the external memory. To definitely deallocate unnecessary information, an

element of the retention vector has to be 0.

To address this issue, we proposed limited retention vector-based memory deallocation

(LRV-DNC). The proposed method converts the minimum of elements in the retention vector

to 0 according to a threshold. The pseudo algorithm for the proposed method is illustrated in

Fig. 2. The detailed explanation of Fig. 2 is as follows:

844 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

1. Search the minimum of elements in the retention vector. The proposed method selects

multiple elements if they are minimum.

2. If the output value of a forget gate is less than the threshold, then the proposed method

converts selected elements of the retention vector to 0. If not, it does not convert.

3. The retention vector generated from 2 is multiplied to the external memory at time-step

(𝑡 − 1)

In the stage 2, the forget gate 𝑔𝑡
𝜓𝑡 (∈ [0,1]) is an element of the interface vector. 𝑔𝑡

𝜓𝑡

determines a decision boundary to which the minimum of elements in the retention vector is

converted to 0 or not according to the threshold 𝑇 (∈ [0,1]). The threshold T is defined as

handicraft value, so it has to be decided before training the DNC. The limitation of our

proposed DNC architecture is as follows: 1) To find the minimum of elements in the retention

vector, search algorithms are needed. We use a binary search algorithm. However, in the worst

case, the time complexity of the binary search algorithm is 𝑂(𝑁) (N is the number of elements

in the retention vector). 2) The threshold T is defined as handicraft value. Therefore, if pre-

trained DNC architecture is used to another LM task, T has to be modified.

Fig. 2. Pseudo algorithm for the proposed memory deallocation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 845

5. Experiments and Discussion

The proposed LRV-DNC was evaluated on the enwik8 LM task. In Section 5.1, we describe

experimental environment. In Section 5.2, we compare the proposed LRV-DNC-based LM

with the Transformer and vanilla DNC. In Section 5.3, we evaluated robustness of the LRV-

DNC-based LM.

5.1 Experimental Environment

The enwik8 LM task dataset consists of 100M characters. Its domain is unprocessed Wikipedia

data. We split the dataset into 90, 5, and 5M characters, respectively, for the train, validation,

and test data. The number of characters in the enwik8 LM task was 206, so we used a 1-of-|𝑉|
vector as an input of all LMs. Each experiment was performed as 3-fold validation for

justifying our experiments.

We used bits-per-character (BPC) as an evaluation metric. BPC is the average number of

bits (a unit of entropy) for encoding a character. In the experiments, BPC is defined as

𝑙𝑜𝑠𝑠/log(2). A server specification was as follows: a 2.20GHz Intel Xeon Gold 5120 CPU

and two Nvidia V100 GPUs.

5.2 The enwik8 LM Task

5.2.1 Experimental Setup

The baseline was the LSTM-based LM from [33]. The Transformer-based LM from [5] was

considered as the SOTA model. We implemented the vanilla DNC-based LM with PyTorch.

The controller is the LSTM. In the controller, the number of LSTM hidden layers was 3, and

the number of LSTM hidden nodes was 1024. The number of vectors in the external memory

was 128. The dimension of each vector in the external memory was 256. The learning rate

initialized at 1 × 10-3. To reduce the learning rate, a scheduler with a plateau objective function

was used. The weight decay was 1 × 10-7. The length of the back-propagation to time (BPTT)

was 120. The batch size was 20.

We also implemented the previous memory deallocation method using the retention vector

(RV-DNC) and our proposed LRV-DNC-based LM with PyTorch. Hyper-parameters of the

RV-DNC-based LM and LRV-DNC-based LM are equal to that of the vanilla DNC-based LM.

In addition, in LRV-DNC-based LM, the threshold was 0.5.

5.2.2 Experimental Results

Table 1 shows the BPC results of the LRV-DNC-based LMs. We evaluated the BPC results

of the proposed DNC-based LM according to the number of read vectors. The LRV-DNC-

based LM using 4 read vectors showed the best BPC results in the DNC-based LMs, with BPC

of 1.3847. Although the BPC result of the Transformer-based LM was a SOTA result (BPC

was 1.1120), our proposed method showed a relative improvement of 0.47% compared with

the vanilla DNC in terms of BPC. In addition, our LRV-DNC-based LM showed a relative

improvement of 0.27% compared with the previous RV-DNC-based LM.

846 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

Table 1. BPC results of the LRV-DNC-based LMs

Model
No. of weight

parameters

No. of read

vectors

BPC

Validation Test

LSTM 18.1 M - - 1.4610

Transformer 44.1 M - - 1.1120

Vanilla DNC 42.5 M 4 1.3959 1.3912

RV-DNC 42.5 M 4 1.3892 1.3885

LRV-DNC

38.9 M 1 1.3911 1.3908

40.1 M 2 1.3882 1.3879

41.4 M 3 1.3860 1.3856

42.5 M 4 1.3851 1.3847

The discussion for Table 1 is as follows: (1) We found that BPC was better when the LRV-

DNC-based LM used more read vectors. The LRV-DNC-based LM using 4 read vectors

showed a relative improvement of 0.44% compared with the LRV-DNC-based LM using a

one read vector in terms of BPC. (2) Although the vanilla DNC and RV-DNC-based LM used

4 read vectors, the LRV-DNC-based LM showed the best BPC result. It showed a relative

improvement of 0.27-0.47% compared with other DNC-based LMs. It means that our

proposed DNC outperformed to previous DNC architecture in the LM task.

5.3 Robustness of LRV-DNC-based LM

5.3.1 Experimental Setup

We also used the LSTM-based LM as the baseline, and the Transformer-based LM as the

SOTA model. The hyper-parameters of vanilla DNC and LRV-DNC-based LMs were equal

to Section 5.2.1. In experiments for robustness evaluation, two types of experiments were

performed for analyzing robustness: 1) the size of the external memory and 2) the size of the

controller.

5.3.2 Experimental Results

Table 2 and Table 3 shows the BPC results of the vanilla DNC-based LMs according to the

different size of the external memory and controller, respectively. In Table 2, although the

size of the external memory is decreased, the vanilla DNC-based LM using 32×32 external

memory demonstrated a relative degradation of 1.66 % compared with the vanilla DNC-based

LM using 128×256 external memory. In addition, in Table 3, although the size of the

controller is decreased, the vanilla DNC-based LM using 32 × 32 external memory

demonstrated a relative degradation of 4.56 % compared with the vanilla DNC-based LM

using 128×256 external memory.

Table 2. BPC results of the vanilla DNC-based LMs according to the different size

of the external memory on the enwik8 LM task

Model

No. of

weight

parameters

No. of

read

vectors

No. of

vectors in

the external

memory

Dim. of

vectors in the

external

memory

BPC

Val Test

LSTM 18.1 M - - 1.4610

Transformer 44.1 M - - 1.1120

Vanilla

DNC

30.5 M 1
32 32

1.4192 1.4181

30.8 M 2 1.4188 1.4179

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 847

31.1 M 3 1.4175 1.4172

31.5 M 4 1.4169 1.4163

30.9 M 1

64 64

1.4151 1.4147

31.5 M 2 1.4135 1.4128

32.2 M 3 1.4130 1.4123

32.8 M 4 1.4126 1.4119

31.7 M 1

128 128

1.4123 1.4117

32.9 M 2 1.4121 1.4112

34.2 M 3 1.4124 1.4115

35.3 M 4 1.4097 1.4098

42.5 M 4 128 256 1.3959 1.3912

The discussion for Table 2 and Table 3 is as follows: (1) In Table 2, the vanilla DNC using

2 read vectors showed higher performance than that of the vanilla DNC using 3 read vectors

when the size of the external memory is 128×128. However, when the vanilla DNC used

32×32 and 64×64 size of the external memory, we found that BPC was better when the vanilla

DNC-based LM used more read vectors. (2) Despite the number of weight parameters in the

vanilla DNC-based LM is smaller than that of the LSTM-based LM in Table 3, the vanilla

DNC-based LM showed higher performance than the LSTM-based LM. It means that the DNC

architecture can be train with long-range context, although the LSTM cannot train with long-

range context.

Table 3. BPC results of the vanilla DNC-based LMs according to the different size

of the controller on the enwik8 LM task

Model

No. of

weight

parameters

No. of

read

vectors

No. of

vectors in

the external

memory

Dim. of

vectors in the

external

memory

BPC

Val Test

LSTM 18.1 M - - 1.4610

Transformer 44.1 M - - 1.1120

Vanilla

DNC

13.8 M 1

32 32

1.4595 1.4588

14.1 M 2 1.4585 1.4582

14.4 M 3 1.4579 1.4570

14.7 M 4 1.4563 1.4567

14.2 M 1

64 64

1.4556 1.4553

14.8 M 2 1.4547 1.4544

15.4 M 3 1.4536 1.4535

16.0 M 4 1.4531 1.4532

15.0 M 1

128 128

1.4525 1.4518

16.2 M 2 1.4517 1.4511

17.4 M 3 1.4504 1.4500

18.6 M 4 1.4479 1.4481

42.5 M 4 128 256 1.3959 1.3912

Table 4 and Table 5 shows the BPC results of the proposed LRV-DNC-based LMs

according to the different size of the external memory and controller, respectively. In Table 4,

although the size of the external memory is decreased, the LRV-DNC-based LM using 32×32

size of the external memory demonstrated a relative degradation of 1.48 % compared with the

LRV-DNC-based LM using 128×256 size of the external memory. In addition, in Table 5,

although the size of the controller is decreased, the LRV-DNC-based LM using 32×32 size of

848 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

the external memory demonstrated a relative degradation of 4.30 % compared with the LRV-

DNC-based LM using 128×256 size of the external memory.

The discussion for Table 4 and Table 5 is as follows: (1) A degradation rate of the LRV-

DNC-based LM using 32×32 size of the external memory was lower than that of the vanilla

DNC-based LM using 32×32 size of the external memory. Although both DNC-based LMs

had same number of weight parameters, the proposed LRV-DNC was more robust than the

vanilla DNC. Therefore, the vanilla DNC was improved with the proposed LRV method as an

aspect of robustness. (2) In Table 4, we found that BPC was better when the LRV-DNC-based

LM used more read vectors. This result was differed to Table 2. (3) Despite the number of

weight parameters in the LRV-DNC-based LM is smaller than that of the LSTM-based LM in

Table 5, the vanilla DNC-based LM showed higher performance than the LSTM-based LM.

It means that the proposed LRV-DNC architecture can be train with long-range context,

although the LSTM cannot train with long-range context, although the LRV-DNC showed

lower performance than the Transformer.

Table 4. BPC results of the LRV-DNC-based LMs according to the different size

of the external memory on the enwik8 LM task

Model

No. of

weight

parameters

No. of

read

vectors

No. of

vectors in

the external

memory

Dim. of

vectors in the

external

memory

BPC

Val Test

LSTM 18.1 M - - 1.4610

Transformer 44.1 M - - 1.1120

LRV-DNC

30.5 M 1

32 32

1.4056 1.4050

30.8 M 2 1.4034 1.4029

31.1 M 3 1.4011 1.4003

31.5 M 4 1.3997 1.3992

30.9 M 1

64 64

1.4015 1.4018

31.5 M 2 1.4003 1.4001

32.2 M 3 1.3990 1.3997

32.8 M 4 1.3982 1.3979

31.7 M 1

128 128

1.3997 1.4005

32.9 M 2 1.3984 1.3985

34.2 M 3 1.3965 1.3972

35.3 M 4 1.3942 1.3935

42.5 M 4 128 256 1.3851 1.3847

Table 5. BPC results of the LRV-DNC-based LMs according to the different size

of the controller on the enwik8 LM task

Model

No. of

weight

parameters

No. of

read

vectors

No. of

vectors in

the external

memory

Dim. of

vectors in the

external

memory

BPC

Val Test

LSTM 18.1 M - - 1.4610

Transformer 44.1 M - - 1.1120

LRV-DNC

13.8 M 1

32 32

1.4446 1.4439

14.1 M 2 1.4438 1.4442

14.4 M 3 1.4413 1.4419

14.7 M 4 1.4391 1.4383

14.2 M 1 64 64 1.4395 1.4397

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 849

14.8 M 2 1.4387 1.4382

15.4 M 3 1.4362 1.4360

16.0 M 4 1.4351 1.4362

15.0 M 1

128 128

1.4375 1.4370

16.2 M 2 1.4359 1.4362

17.4 M 3 1.4345 1.4338

18.6 M 4 1.4321 1.4316

42.5 M 4 128 256 1.3851 1.3847

6. Conclusion

The vanilla DNC architecture has drawback in memory deallocation, because the vector of the

currently accessed external memory address is not deallocated definitely. Therefore, in the

read operation, the vector has not been deallocated can be accessed. It affects to read vectors,

and causes performance degradation. To solve this issue, we proposed the memory

deallocation method using the limited retention vector (LRV-DNC). The proposed method

searches the minimum elements in the retention vector. These elements are converted to 0 if

the output value of the forget gate is less than the handcraft threshold. The modified retention

vector is multiplied to the external memory at time-step (𝑡 − 1). In the experiments, the LRV-

DNC-based LM showed a relative improvement of 0.27-0.47% compared with other DNC-

based LMs, although the Transformer-based LM showed the SOTA results. In addition, the

LRV-DNC-based LM showed a relative degradation of 1.48-4.30%. These results were more

robustness to the vanilla DNC-based LM. Therefore, the vanilla DNC can have higher

robustness if it uses our proposed LRV method.

References

[1] S. Mani, S. V. Gothe, S. Ghosh, A. K. Mishra, P. Kulshreshtha, M. Bhargavi, and M. Jumaran,

“Real-time optimized n-gram for mobile devices,” in Proc. of the 13th International Conference

on Semantic Computing, pp. 87-92, 2019. Article (CrossRef Link)

[2] R. Mu and X. Zeng, “A review of deep learning research,” KSII Transactions on Internet and

Information Systems, vol. 13, no. 4, pp. 1738-1764, Apr. 2019. Article (CrossRef Link)

[3] F. Lin, X. Ma, Y. Chen, J. Zhou, and B. Liu, “PC-SAN: Pretraining-based contextual self-attention

model for topic essay generation,” KSII Transactions on Internet and Information Systems, vol.

14, no. 8, pp. 3168-3186, Aug. 2020. Article (CrossRef Link)

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, T. Kaiser, and I.

Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, pp.

1-11, 2017. Article (CrossRef Link)

[5] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov, “Transformer-XL: Attentive

language models beyond a fixed-length context,” in Proc. of the 57th Annual Meeting of the

Association for Computational Linguistics, pp. 2928-2988, 2019. Article (CrossRef Link)

[6] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska, and S. Colmenarejo,

“Hybrid computing using a neural network with dynamic external memory,” Nature, vol. 538, pp.

471-476, Oct. 2016. Article (CrossRef Link)

[7] W. Luo and F. Yu, “Recurrent highway networks with grouped auxiliary memory,” IEEE Access,

vol. 7, pp. 182037-182049, Dec. 2019. Article (CrossRef Link)

[8] R. Csordas and J. Schmidhuber, “Improving differentiable neural computers through memory

masking, de-allocation, and link distribution sharpness control,” in Proc. of International

Conference on Learning Representations, pp. 7299-7310, 2019. Article (CrossRef Link)

https://doi.org/10.1109/ICOSC.2019.8665639
http://doi.org/doi:10.3837/tiis.2019.04.001
http://doi.org/doi:10.3837/tiis.2020.08.001
http://papers.neurips.cc/paper/7181-attention-is-all-you-need
http://doi.org/doi:10.18653/v1/P19-1285
https://doi.org/10.1038/nature20101
https://doi.org/10.1109/ACCESS.2019.2959655
https://openreview.net/forum?id=HyGEM3C9KQ

850 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

[9] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur, “Recurrent neural network

based language model,” in Proc. of the 11th Annual Conference of the International Speech

Communication Association, pp. 1045-1048, 2010. Article (CrossRef Link)

[10] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,”

in Proc. of the 30th International Conference on Machine Learning, vol. 28, no. 3, pp. 1310-1318,

2013. Article (CrossRef Link)

[11] E. Arisoy, A. Sethy, B. Ramabhadran, and S. Chen, “Bidirectional recurrent neural network

language models for automatic speech recognition,” in Proc. of 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 5421-5425, 2015.

Article (CrossRef Link)

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computing, vol. 9, no. 8,

pp. 1735-1780, Nov. 1997. Article (CrossRef Link)

[13] U. Khandelwal, H. He, P. Qi, and D. Jurafsky, “Sharp nearby, fuzzy far away: How neural

language models use context,” in Proc. of the 56th Annual Workshops of the Association for

Computational Linguistics, pp. 284-294, 2018. Article (CrossRef Link)

[14] Y. Zhang, X. Wang, and H. Tang, “An improved Elman neural network with piecewise weighted

gradient for time series prediction,” Neurocomputing, vol. 359, pp. 199-208, Sep. 2019.

Article (CrossRef Link)

[15] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show,

attend and tell: Neural image caption generation with visual attention,” in Proc. of the 32nd

International Conference on Machine Learning, vol. 37, pp. 2048-2057, 2015.

Article (CrossRef Link)

[16] Y. Belinkov and J. Glass, “Analysis methods in neural language processing: A survey,”

Transactions of Association for Computational Linguistics, vol. 7, pp. 49-72, Mar. 2019.

Article (CrossRef Link)

[17] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, “Character-level language modeling

with deeper self-attention,” in Proc. of the AAAI Conference on Artificial Intelligence, vol. 33, no.

1, pp. 3159-3166, 2019. Article (CrossRef Link)

[18] S. Duan, H. Zhao, J. Zhou, and R. Wang, “Syntax-aware transformer encoder for neural machine

translation,” in Proc. of 2019 International Conference on Asian Language Processing, pp. 396-

401, 2019. Article (CrossRef Link)

[19] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional

transformers for language understanding,” in Proc. of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics, vol. 1, pp. 4171-4186, 2019.

Article (CrossRef Link)

[20] J. Yang, M. Wang, H. Zhou, C. Zhao, W. Zhang, Y. Yu, and L. Li, “Towards making the most of

BERT in neural machine translation,” in Proc. of the AAAI Conference on Artificial Intelligence,

vol. 34, no. 5, pp. 9378-9385, 2020. Article (CrossRef Link)

[21] W. Shi and V. Demberg, “Next sentence prediction helps implicit discourse relation classification

within and across domains,” in Proc. of 2019 Conference on Empirical Methods in Natural

Language Processing, pp. 5790-5796, 2019. Article (CrossRef Link)

[22] Y. Qu, P. Liu, W. Song, L. Liu, and M. Cheng, “A text generation and prediction system: pre-

training on new corpora using BERT and GPT-2,” in Proc. of the 10th International Conference

on Electronics Information and Emergency Communication, pp. 323-326, 2020.

Article (CrossRef Link)

[23] W. Ko and J. Li, “Assessing discourse relations in language generation from GPT-2,” in Proc. of

the 13th International Conference on Natural Language Generation, pp. 52-59, 2020.

Article (CrossRef Link)

[24] L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope, limits, and consequences,” Minds and

Machines, vol. 30, pp. 681-694, Nov. 2020. Article (CrossRef Link)

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, and A. Neelakanta, “Language

models are few-shot learners,” in Proc. of Conference on Neural Information Processing Systems,

pp. 1-25, 2020. Article (CrossRef Link)

https://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://proceedings.mlr.press/v28/pascanu13.html
http://doi.org/doi:10.1109/ICASSP.2015.7179007
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.1016/j.neucom.2019.06.001
http://proceedings.mlr.press/v37/xuc15.html
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.1109/IALP48816.2019.9037672
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1609/aaai.v34i05.6479
http://dx.doi.org/10.18653/v1/D19-1586
https://doi.org/10.1109/ICEIEC49280.2020.9152352
https://www.aclweb.org/anthology/2020.inlg-1.8
https://doi.org/10.1007/s11023-020-09548-1
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 851

[26] J. Kim, I. Choi, and M. Lee, “Context aware video caption generation with consecutive

differentiable neural computer,” Electronics, vol. 9, no. 7, pp. 1-15, July 2020.

Article (CrossRef Link)

[27] T. Park, I. Choi, and M. Lee, “Distributed memory based self-supervised differentiable neural

computer,” arXiv:2007.10637, 2020. Article (CrossRef Link)

[28] M. Rasekh and F. Safi-Esfahani, “EDNC: Evolving differentiable neural computers,”

Neurocomputing, vol. 412, pp. 514-542, Oct. 2020. Article (CrossRef Link)

[29] R. Sharma, A. Kumar, D. Meena, and S. Pushp, “Employing differentiable neural computers for

image captioning and neural machine translation,” Procedia Computer Science, vol. 173, pp. 234-

244, July 2020. Article (CrossRef Link)

[30] Y. Ming, D. Pelsusi, C. Fang, M. Prasad, Y. Wang, D. Wu, and C. T. Lin, “EEG data analysis with

stacked differentiable neural computers,” Neural Computing and Applications, vol. 32, pp. 7611-

7621, June 2018. Article (CrossRef Link)

[31] A. Mufti, S. Penkov, and S. Ramamoorthy, “Iterative model-based reinforcement learning using

simulations in the differentiable neural computer,” arXiv:1906.07248, 2019.

Article (CrossRef Link)

[32] C. Yin, J. Tang, Z. Xu, and Y. Wang, “Memory augmented deep recurrent neural network for

video question answering,” IEEE Transactions on Neural Networks and Learning Systems, vol.

31, no. 9, pp. 3159-3167, Sep. 2020. Article (CrossRef Link)

[33] A. Mujika, F. Meier, and A. Steger, “Fast-slow recurrent neural networks,” in Proc. of the 31st

Annual Conference on Neural Information Processing Systems, pp. 5917-5926, 2017.

Article (CrossRef Link)

Donghyun Lee received his B.E. degree in Computer Science and Engineering from

Sogang University, Republic of Korea in 2013 and his Ph.D. degree in Computer Science

and Engineering from Sogang University. He is currently pursuing a Post-Doc. researcher in

the Computer Science and Engineering Department, Sogang University. His research

interests include speech recognition and spoken multimedia content search.

Hosung Park received his B.E. degree in Computer Science and Engineering from

Handong Global University in 2016. He also received his M.E. degree in Computer Science

and Engineering from Sogang University in 2018. He is currently pursuing a Ph.D. degree

in Computer Science and Engineering at Sogang University. His research interests include

speech recognition and spoken multimedia content.

https://doi.org/10.3390/electronics9071162
https://arxiv.org/abs/2007.10637
https://doi.org/10.1016/j.neucom.2020.06.018
https://doi.org/10.1016/j.procs.2020.06.028
https://doi.org/10.1007/s00521-018-3879-1
https://arxiv.org/abs/1906.07248
https://doi.org/10.1109/TNNLS.2019.2938015
https://papers.nips.cc/paper/2017/file/e4a93f0332b2519177ed55741ea4e5e7-Paper.pdf

852 Lee et al.: Robustness of Differentiable Neural Computer Using Limited Retention
Vector-based Memory Deallocation in Language Model

Soonshin Seo received his B.A. degree in Linguistics and B.E. degree in Computer Science

and Engineering from Hankuk University of Foreign Studies in 2018. He is currently

pursuing a Ph.D. degree in Computer Science and Engineering at Sogang University. His

research interests include speaker recognition and spoken multimedia content search.

Hyunsoo Son received his B.E. degree in Computer Science and Engineering from Sogang

University in 2019. He is currently pursuing a M.E. degree in Computer Science and

Engineering at Sogang University. His research interests include speech recognition and

spoken multimedia content search.

Gyujin Kim received his B.E. degree in Computer Science and Engineering from Sogang

University in 2019. He is currently pursuing a M.E. degree in Computer Science and

Engineering at Sogang University. His research interests include speech recognition.

Ji-Hwan Kim received the B.E. and M.E. degrees in Computer Science from KAIST

(Korea Advanced Institute of Science and Technology) in 1996 and 1998 respectively and

Ph.D. degree in Engineering from the University of Cambridge in 2001. From 2001 to 2007,

he was a chief research engineer and a senior research engineer in LG Electronics Institute

of Technology, where he was engaged in development of speech recognizers for mobile

devices. In 2004, he was a visiting scientist in MIT Media Lab. Since 2007, he has been a

faculty member in the Department of Computer Science and Engineering, Sogang University.

Currently, he is a full professor. His research interests include spoken multimedia content

search, speech recognition for embedded systems and dialogue understanding.

