• Title/Summary/Keyword: Landslide analysis

Search Result 433, Processing Time 0.031 seconds

Analysis on the effect of the forest fire and rainfall on landslide in Gangwon area (강원지역 산사태발생지의 산불발생이력과 강우특성에 관한 분석)

  • Jun, Kyoung-Jea;Lee, Seung-Woo;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1020-1025
    • /
    • 2009
  • Recently, unusual change of weather occurred in world wide region causes localized heavy rainfall and consequently disasters like landslide and debris flow in steep slope area. And the main factors of these disasters are rainfall and forest fire. To verify the existing landslide prediction and warning system, information about landslide and rainfall were collected for a data base system and analysed.

  • PDF

Predicting Landslide Damaged Area According to Climate Change Scenarios (기후변화 시나리오를 적용한 산사태 피해면적 변화 예측)

  • Song Eu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.376-386
    • /
    • 2023
  • Due to climate changes, landslide hazards in the Republic of Korea (hereafter South Korea) continuously increase. To establish the effective landslide mitigation strategies, such as erosion control works, landslide hazard estimation in the long-term perspective should be proceeded considering the influence of climate changes. In this study, we examined the change in landslide-damaged areas in South Korea responding to climate change scenarios using the multivariate regression method. Data on landslide-damaged areas and rainfall from 1981-2010 were used as a training dataset. Sev en indices were deriv ed from rainfall data as the model's input data, corresponding to rainfall indices provided from two SSP scenarios for South Korea: SSP1-2.6 and SSP5-8.5. Prior to the multivariate regression analysis, we conducted the VIF test and the dimension analysis of regression model using PCA. Based on the result of PCA, we developed a regression model for landslide damaged area estimation with two principal components, which cov ered about 93% of total v ariance. With climate change scenarios, we simulated landslide-damaged areas in 2030-2100 using the regression model. As a result, the landslide-damaged area will be enlarged more than the double of current annual mean landslide damaged area of 1981-2010; It infers that landslide mitigation strategies should be reinforced considering the future climate condition.

Techniques of Selection of Landslide Hazard Area on Analysis of Topographical Data (지형 데이타 해석에 따른 산사태 위험지역 선정 기법)

  • 강인준;최철웅;장용구
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • Landslides in the close residential area occur loss of life and properties. Usually soil mechanical methods and multi-statistical methods used to analysis the landslide. The factors of landslide analysis by multi-statistical methods are composite operations of geology, topography, vegetation, and climate etc. In this study, existing landslide areas are cheesed to extract the characteristics of their geographical data for adaption of Multi-statical methods. Authors give a weight to their values and analyze the some area using technique of overlap on GSIS.

  • PDF

Evaluating comparisons of geological hazards in landslides using fuzzy logic methods and hierarchical analysis

  • Shasha Yang;Maryam Shokravi;H. Tabatabay
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.499-505
    • /
    • 2023
  • Geological hazards in landslide is one of the most extensive and destructive phenomena are among natural disasters. According to the topography high mountains, tectonic activity, high seismicity, diverse conditions Geology and climate, basically China to create a wide spectrum of landslides have natural conditions and these landslides are annual. They cause a lot of financial losses to the country. It is very difficult to predict the time of the landslide, hence the identification landslide sensitive areas and zoning of these areas based on the potential risk is very important. Therefore, it should be susceptible areas landslides should be identified in order to reduce damages caused by landslides find. the main purpose of landslide sensitivity analysis is identification high-risk areas and as a result, reducing damages caused by landslides It is the way of appropriate actions.

A Comparative Analysis of Landslide Susceptibility Using Airborne LiDAR and Digital Map (항공 LiDAR와 수치지도를 이용한 산사태 취약성 비교 분석)

  • Kim, Se Jun;Lee, Jong Chool;Kim, Jin Soo;Roh, Tae Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.281-292
    • /
    • 2014
  • This study examined the accuracy that produced using various types and combinations of landslide-related factors from landslide susceptibility index maps. A database of landslide-related factors was adopted by the landslide locations that obtained from aerial photographs, and the topographic factors that derived from airborne LiDAR observations and digital maps, and various soil, forest, and land cover. Landslide susceptibility index maps were calculated by logistic regression and frequency ratio from the landslide susceptibility index. The correlation between airborne LiDAR data and digital map was shown strong similarities with one another. Landslide susceptibility index maps indicated the existence of a strong correlation and high prediction accuracy, especially when the frequency ratio and airborne LiDAR were used. Therefore, we concluded that the Airborne LiDAR will contribute to the development of effective landslide prediction methods and damage reduction measures.

Review of earthquake-induced landslide modeling and scenario-based application

  • Lee, Giha;An, Hyunuk;Yeon, Minho;Seo, Jun Pyo;Lee, Chang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.963-978
    • /
    • 2020
  • Earthquakes can induce a large number of landslides and cause very serious property damage and human casualties. There are two issues in study on earthquake-induced landslides: (1) slope stability analysis under seismic loading and (2) debris flow run-out analysis. This study aims to review technical studies related to the development and application of earthquake-induced landslide models (seismic slope stability analysis). Moreover, a pilot application of a physics-based slope stability model to Mt. Umyeon, in Seoul, with several earthquake scenarios was conducted to test regional scale seismic landslide mapping. The earthquake-induced landslide simulation model can be categorized into 1) Pseudo-static model, 2) Newmark's dynamic displacement model and 3) stress-strain model. The Pseudo-static model is preferred for producing seismic landslide hazard maps because it is impossible to verify the dynamic model-based simulation results due to lack of earthquake-induced landslide inventory in Korea. Earthquake scenario-based simulation results show that given dry conditions, unstable slopes begin to occur in parts of upper areas due to the 50-year earthquake magnitude; most of the study area becomes unstable when the earthquake frequency is 200 years. On the other hand, when the soil is in a wet state due to heavy rainfall, many areas are unstable even if no earthquake occurs, and when rainfall and 50-year earthquakes occur simultaneously, most areas appear unstable, as in simulation results based on 100-year earthquakes in dry condition.

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

Analysis of the potential landslide hazard after wildfire considering compound disaster effect (복합재해 영향을 고려한 산불 후 산사태 잠재적 피해 위험도 분석)

  • Lee, Jong-Ook;Lee, Dong-Kun;Song, Young-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • Compound disaster is the type that increases the impact affected by two or more hazard events, and attention to compound disaster and multi-hazards risk is growing due to potential damages which are difficult to predict. The objective of this study is to analyze the possible impacts of post-fire landslide scenario quantitatively by using TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis), a physics-based landslide model. In the case of wildfire, soil organic material and density are altered, and saturated hydraulic conductivity decrease because of soil exposed to high temperature. We have included the change of soil saturated hydraulic conductivity into the TRIGRS model through literature review. For a case study, we selected the area of $8km^2$ in Pyeongchang County. The landslide modeling process was calibrated before simulate the post-wildfire impact based on landslide inventory data to reduce uncertainty. As a result, the mean of the total factor of safety values in the case of landslide was 2.641 when rainfall duration is 1 hour with rainfall intensity of 100mm per day, while the mean value for the case of post-wildfire landslide was lower to 2.579, showing potential landslide occurrence areas appear more quickly in the compound disaster scenario. This study can be used to prevent potential losses caused by the compound disaster such as post-wildfire debris flow or landslides.

The Landslide Probability Analysis using Logistic Regression Analysis and Artificial Neural Network Methods in Jeju (로지스틱회귀분석기법과 인공신경망기법을 이용한 제주지역 산사태가능성분석)

  • Quan, He Chun;Lee, Byung-Gul;Lee, Chang-Sun;Ko, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.33-40
    • /
    • 2011
  • This paper presents the prediction and evaluation of landslide using LRA(logistic regression analysis) and ANN (Artificial Neural Network) methods. In order to assess the landslide, we selected Sarabong, Byeoldobong area and Mt. Song-ak in Jeju Island. Five factors which affect the landslide were selected as: slope angle, elevation, porosity, dry density, permeability. So as to predict and evaluate the landslide, firstly the weight value of each factor was analyzed by LRA(logistic regression analysis) and ANN(Artificial Neural Network) methods. Then we got two prediction maps using AcrView software through GIS(Geographic Information System) method. The comparative analysis reveals that the slope angle and porosity play important roles in landslide. Prediction map generated by LRA method is more accurate than ANN method in Jeju. From the prediction map, we found that the most dangerous area is distributed around the road and path.