DOI QR코드

DOI QR Code

무한방향흐름기법을 이용한 산사태 위험도 평가

Estimation of Landslide Risk based on Infinity Flow Direction

  • Oh, Sewook (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Lee, Giha (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Bae, Wooseok (R&D Center NANO-GEO ENC Co. Ltd.)
  • 투고 : 2018.10.10
  • 심사 : 2019.01.31
  • 발행 : 2019.02.01

초록

본 연구에서는 경상북도 전체를 대상으로 공간분포형 습윤지수와 뿌리보강무한사면안정해석 이론을 활용한 광역적인 산사태 분석을 실시하였다. 해석을 수행하기 위해 수치지도와 정밀토양도, 임상도 등을 이용하여 지형 지질학적 매개변수를 추출하고 $10m{\times}10m$ 해상도의 공간분포형 데이터베이스를 구축하였으며, 공간분포형 습윤지수를 생성하기 위한 비 집수면적은 무한방향흐름기법을 적용하였다. 광역적인 산사태 위험도 평가를 위한 안전율은 4개 등급으로 구분하여 도시하였다. 위험도 평가결과, 산사태 위험지역은 봉화와 김천 등 실제 최근의 산사태 발생지역과 유사성을 갖는 것으로 나타났으며 특히 산지와 인접한 지역에 unstable 지역이 집중적으로 분포되어 있는 것으로 분석되었다. 또한 산사태 기록과 비교해본 결과, 본 해석모형이 합리적인 매개변수의 축적을 통해 광역적인 산사태 위험성을 평가하는 유효한 방법임을 확인할 수 있다.

In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

키워드

HJHGC7_2019_v20n2_5_f0001.png 이미지

Fig. 1. Comparison of flow direction methods for contributing area calculation

HJHGC7_2019_v20n2_5_f0002.png 이미지

Fig. 2. Infinity flow direction algorithm

HJHGC7_2019_v20n2_5_f0003.png 이미지

Fig. 3. Hydrologic unit map of study area

HJHGC7_2019_v20n2_5_f0004.png 이미지

Fig. 4. Slope of the sub-catchments (unit: °)

HJHGC7_2019_v20n2_5_f0005.png 이미지

Fig. 5. Hydraulic conductivity distribution

HJHGC7_2019_v20n2_5_f0006.png 이미지

Fig. 6. Effective soil depth distribution

HJHGC7_2019_v20n2_5_f0007.png 이미지

Fig. 7. Soil unit weight distribution

HJHGC7_2019_v20n2_5_f0008.png 이미지

Fig. 8. Soil cohesion distribution

HJHGC7_2019_v20n2_5_f0009.png 이미지

Fig. 9. Soil friction angle distribution

HJHGC7_2019_v20n2_5_f0010.png 이미지

Fig. 10. Root cohesion distribution

HJHGC7_2019_v20n2_5_f0011.png 이미지

Fig. 11. Spacial distribution of maximum rainfall with year

HJHGC7_2019_v20n2_5_f0012.png 이미지

Fig. 12. Spacial distribution of hazard grade classification in steep slope with year

HJHGC7_2019_v20n2_5_f0013.png 이미지

Fig. 13. Spacial distribution of average landslide hazard grade

HJHGC7_2019_v20n2_5_f0014.png 이미지

Fig. 14. Spacial distribution of average landslide hazard gradewith administration area

Table 1. Resently landslide occurrence with year (e-나라지표, 2018)

HJHGC7_2019_v20n2_5_t0001.png 이미지

Table 2. Facet elevation and factors for slope and angle calculations (Tarboton, 1997)

HJHGC7_2019_v20n2_5_t0002.png 이미지

Table 3. Roots tensile strength with major species (MPa)

HJHGC7_2019_v20n2_5_t0003.png 이미지

Table 4. Roots cohension with forest types (MPa)

HJHGC7_2019_v20n2_5_t0004.png 이미지

Table 5. Root cohesion based on the administrative units (MPa)

HJHGC7_2019_v20n2_5_t0005.png 이미지

Table 6. The number by causes of landslide occurrence in Joseon dynasty (Lee et al., 2013)

HJHGC7_2019_v20n2_5_t0006.png 이미지

Table 7. Current state of landslide with administration area

HJHGC7_2019_v20n2_5_t0007.png 이미지

참고문헌

  1. e-나라지표, 산사태피해현황, 2018.01.09, www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1311
  2. Acharya, G., De Smedt, F. and Long, N. T. (2006), Assessing landslide hazard in GIS: a case study from Rasuwa, Nepal, Bulletin of Engineering Geology and the Environment, Vol. 65, No. 1, pp. 99-107. https://doi.org/10.1007/s10064-005-0025-y
  3. Anderson, M. G., Colison, A. J. C., Hartshorne, J., Lloyd, D. M. and Park, A. (1996), Developments in slope hydrology-stabilty modeling for tropical slopes, Advances in Hillslope Processes, Wiley, pp. 79-821.
  4. Baum, R. L., Savage, W. Z. and Godt, J. W. (2002), TRIGRS A Fortran Program for Transient Rainfal Infiltration and Grid-Based Regional Slope-Stabilty Analysis, U.S. Geological Survey, Open-file Report 02-0424, p. 27.
  5. Beven, K. J. and Kirkby, M. J. (1979), A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24, pp. 43-69. https://doi.org/10.1080/02626667909491834
  6. Borga, M., G. Dalla Fontana. and F. Cazorzi. (2002), Analysis of topographic and climatic control on rainfall�triggered shallow landsliding using a quasi-dynamic wetness index, Journal of Hydrology 268, pp. 56-71. https://doi.org/10.1016/S0022-1694(02)00118-X
  7. Choi, J. R. (2010), Assessment of potential landslides in naerin watershed: linking eco-hydrology model and stability model, Master's thesis, Gangwon University, pp. 1-70 (In Korean).
  8. Han, J. Y. (2003), Digital terrain analysis for the prediction of soil moisture and development of dynamic wetness index, Master's thesis, Pusan University, pp. 1-71 (In Korean).
  9. Jeon, G. W. and Oh, C. Y. (2014), Risk analysis of debris flow using a probability based method in GIS -Inje, Gangwon-do, Korea, Crisisonomy, Vol. 10, No. 1, pp. 197-209 (In Korean).
  10. Jung, K. W. (2010), Studies on the causal characteristics of landslide and the development of hazard prediction map for landslide in Gyeongsangbuk-Do Province, Korea, Ph.D dissertation, Kyungpook National University, pp. 1-133 (In Korean).
  11. Kim, M. G. (2004), GIS landslide hazard mapping using root strength reinforcement model, Master's thesis, Sungkyunkwan University, pp. 1-42 (In Korean).
  12. Lee, C. W., Seo, J. P. and Kang, Y. H. (2013), Analysis of landslide characteristic during Joseon dynasty through historical literature survey, Journal of Korean Society Hazard Mitigation, Vol. 13, No. 6, pp. 161-165 (In Korean). https://doi.org/10.9798/KOSHAM.2013.13.6.161
  13. Lee, I. M., Sung, S. K. and Lim, C. M. (1991), An experimental study on the effect of vegetation roots on slope stability of hillside slopes, Journal of Korean Geotechnical Society, Vol. 7, No. 2, pp. 51-66 (In Korean).
  14. Lee, G. H., Oh, S. R., An, H. U. and Jung, K. S. (2012a), A comparative analysis on slope stability using specific catchment area calculation, Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 643-656 (In Korean). https://doi.org/10.3741/JKWRA.2012.45.7.643
  15. Lee, S. R. (1999), Development and application of landslide susceptibility analysis techniques using Geographic Information System (GIS), Ph.D dissertation, Yeunse University, pp. 1-163 (In Korean).
  16. Lee, S. W., Kim, G. H., Yune, C. Y., Ryu, H. J. and Hong, S. J. (2012b), Development of landslide-risk prediction model thorough database construction, Journal of Korean Geotechnical Society, Vol. 28, No. 4, pp. 23-33 (In Korean). https://doi.org/10.7843/kgs.2012.28.4.23
  17. Montgomery, D. R. and Dietrich, W. E. (1994), A physically based model for the topographic control on shallow landsliding, Water Resources Research, Vol. 30, No. 4, pp. 1153-1171. https://doi.org/10.1029/93WR02979
  18. National Disaster Management Institute (2003), Slope Failure Disaster Research using Geographic Information System, p. 80 (In Korean).
  19. O'Callaghan, J. F. and Mark, D. M. (1984), The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, Vol. 28, pp. 328-344.
  20. O'Loughlin, E. M. (1986), Prediction of surface saturation zones in natural catchments by topographic analysis, Water Resources Research, Vol. 22, No. 5, pp. 794-804. https://doi.org/10.1029/WR022i005p00794
  21. Oh, S. R. and Lee, G. H. (2014), Slope stability analysis at catchment scale using spatially-distributed wetness index, Journal of Korean Geographers, Vol. 3, No. 2, pp. 111-126 (In Korean). https://doi.org/10.25202/JAKG.3.2.3
  22. Pack, R. T., Tarboton, D. G. and Godwin, C. N. (1998), The SINMAP aproach to terrain stability mapping, proceedings-international congress of the international association for engineering geology and the environment, Balkema, Roterdam, Netherlands, pp. 157-165.
  23. Quinn, P., Beven, K., Chevallier, P. and Planchon, O. (1991), The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrological Processes, Vol. 5, pp. 59-79. https://doi.org/10.1002/hyp.3360050106
  24. Rawls, W. J. and Brakensiek, D. L. (1985), Prediction of soil water properties for hydrologic modeling, Watershed Management in the Eighties, in Jones, E and Ward, T.J. eds., Proceedings of a Symposium ASCE, New York, pp. 293-299.
  25. Rawls, W. J., Brakensiek, D. L. and Miller, N. (1983), Greenampt infiltration parameters from soil data, Journal of Hydraulic Engineering, Vol. 109, No. 1, pp. 62-70. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62)
  26. Ray, R. L. and De Smedt, F. (2009), Slope stability analysis using GIS on a regional scale: a case study from Dhalding, Nepal, Environmental Geology, Vol. 57, No. 7, pp. 1603-1611. https://doi.org/10.1007/s00254-008-1435-5
  27. Simoni, S., Zanoti, F., Bertoldi, G. and Rigon, R. (2008), Modeling the probabilty of ocurence of shallow landslides and channelized debris flows using GEOtop FS, Hydrological Proceedings, Vol. 2, pp. 532-545.
  28. Tarboton, D. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, Vol. 33, pp. 309-319. https://doi.org/10.1029/96WR03137
  29. Wu, T. H., McKinnell, W. P. III. and Swanston, D. N. (1979), Strength of tree roots and landslides on prince of wales Island, Alaska, Canadian Journal of Geotechnical Research, Vol. 16, No. l, pp. 19-33. https://doi.org/10.1139/t79-003
  30. Yang, I. T., Chun, K. S., Park, J. K. and Lee, S. Y. (2007), An estimation to landslide vulnerable area of rainfall condition using GIS, Journal of the Korean Society for Geospatial Information Science, Vol. 15, No. 1, pp. 39-46 (In Korean).