• Title/Summary/Keyword: Land use and land cover change

Search Result 206, Processing Time 0.025 seconds

Identification of the Anthropogenic Land Surface Temperature Distribution by Land Use Using Satellite Images: A Case Study for Seoul, Korea

  • Bhang, Kon Joon;Lee, Jin-Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.249-260
    • /
    • 2017
  • UHI (Urban Heat Island) is an important environmental issue occurring in highly developed (or urbanized) area such as Seoul Metropolitan City of Korea due to modification of the land surface by man-made structures. With the advance of the remote sensing technique, land cover types and LST (Land Surface Temperature) influencing UHI were frequently investigated describing that they have a positive relationship. However, the concept of land cover considers material characteristics of the urban cover in a comprehensive way and does not provide information on how human activities influence on LST in detail. Instead, land use reflects ways of land use management and human life patterns and behaviors, and explains the relationship with human activities in more details. Using this concept, LST was segmented according to land use types from the Landsat imagery to identify the human-induced heat from the surface and interannual and seasonal variation of LST with GIS. The result showed that the LST intensity of Seoul was greatest in the industrial area and followed by the commercial and residential areas. In terms of size, the residential area could be defined as the major contributor among six urban land use types (i.e., residential, industrial, commercial, transportation, etc.) affecting UHI during daytime in Seoul. For temperature, the industrial area was highest and could be defined as a major contributor. It was found that land use type was more appropriate to understand the human-induced effect on LST rather than land cover. Also, there was no significant change in the interannual pattern of LST in Seoul but the seasonal difference provided a trigger that the human life pattern could be identified from the satellite-derived LST.

Impacts of Urban Land Cover Change on Land Surface Temperature Distribution in Ho Chi Minh City, Vietnam

  • Le, Thi Thu Ha;Nguyen, Van Trung;Pham, Thi Lan;Tong, Thi Huyen Ai;La, Phu Hien
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.113-122
    • /
    • 2021
  • Urban expansion, particularly converting sub-urban areas to residential and commercial land use in metropolitan areas, has been considered as a significant signal of regional economic development. However, this results in urban climate change. One of the key impacts of rapid urbanization on the environment is the effect of UHI (Urban Heat Island). Understanding the effects of urban land cover change on UHI is crucial for improving the ecology and sustainability of cities. This research reports an application of remote sensing data, GIS (Geographic Information Systems) for assessing effects of urban land cover change on the LST (Land Surface Temperature) and heat budget components in Ho Chi Minh City, where is one of the fastest urbanizing region of Vietnam. The change of urban land cover component and LST in the city was derived by using multi-temporal Landsat data for the period of 1998 - 2020. The analysis showed that, from 1998 to 2020 the city had been drastically urbanized into multiple directions, with the urban areas increasing from approximately 125.281 km2 in 1998 to 162.6 km2 in 2007, and 267.2 km2 in 2020, respectively. The results of retrieved LST revealed the radiant temperature for 1998 ranging from 20.2℃ to 31.2℃, while that for 2020 remarkably higher ranging from 22.1℃ to 42.3℃. The results also revealed that given the same percentage of urban land cover components, vegetation area is more effective to reduce the value of LST, meanwhile the impervious surface is the most effective factor to increase the value of the LST.

Sensitivity Analysis of Near Surface Air Temperature to Land Cover Change and Urban Parameterization Scheme Using Unified Model (통합모델을 이용한 토지피복변화와 도시 모수화 방안에 따른 지상 기온 모의성능 민감도 분석)

  • Hong, Seon-Ok;Byon, Jae-Young;Park, HyangSuk;Lee, Young-Gon;Kim, Baek-Jo;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.427-441
    • /
    • 2018
  • This study examines the impact of the urban parameterization scheme and the land cover change on simulated near surface temperature using Unified Model (UM) over the Seoul metropolitan area. We perform four simulations by varying the land cover and the urban parameterization scheme, and then compare the model results with 46 AWS observation data from 2 to 9 August 2016. Four simulations were performed with different combination of two urban parameterization schemes and two land cover data. Two schemes are Best scheme and MORUSES (Met Office Reading Urban Surface Exchange Scheme) and two land cover data are IGBP (International Geosphere and Biosphere Programme) and EGIS (Environmental Geographic information service) land cover data. When land use data change from IGBP to EGIS, urban ratio over the study area increased by 15.9%. The results of the study showed that the higher change in urban fraction between IGBP and EGIS, the higher the improvement in temperature performance, and the higher the urban fraction, the higher the effect of improving temperature performance of the urban parameterization scheme. 1.5-m temperature increased rapidly during the early morning due to increase of sensible heat flux in EXP2 compared to CTL. The MORUSES with EGIS (EXP3) provided best agreement with observations and represents a reasonable option for simulating the near surface temperature of urban area.

Analysis of Spatial Information Characteristics for Establishing Land Use, Land-Use Change and Forestry Matrix (Land Use, Land-Use Change and Forestry 매트릭스 작성을 위한 공간정보 특성 고찰)

  • HWANG, Jin-Hoo;JANG, Rae-Ik;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.44-55
    • /
    • 2018
  • The importance of establishing a greenhouse gas inventory is emerging for policymaking and its implementation to cope with climate change. Thus, it is needed to establish Approach 3 level Land Use, Land-Use Change and Forestry (LULUCF) matrix that is spatially explicit regarding land use classifications and changes. In this study, four types of spatial information suitable for establishing the LULUCF matrix were analyzed - Cadastral Map, Land Cover Map, Forest Map, and Biotope Map. This research analyzed the classification properties of each type of spatial information and compared the quantitative and qualitative characteristics of the maps in Boryeong city. Drawn from the conclusions of the quantitative comparison, the forest area showed the maximum difference of 50.42% ($303.79km^2$) in the forest map and 46.09%($276.65km^2$) in the cadastral map. The qualitative comparison drew five qualitative characteristics: data construction scope difference, data construction purpose difference, classification standard difference, and classification item difference. As a result of the study, it was evident that the biotope map was the most appropriate spatial information for the establishment of the LULUCF matrix. In addition, if the LULUCF matrix is made by integrating the biotope, the forest map, and the land cover map, the limitations of each spatial information would be improved. The accuracy of the LULUCF matrix is expected to be improved when the map of the level-3 land cover map and the biotope map of 1:5,000 covering the whole country are completed.

Multi-temporal NDVI Change Patterns and Global Land Cover Dynamics (다중시기 NDVI 변화 패턴과 토지 피복상태의 변화에 관한 연구)

  • Seong, Jeong-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.3
    • /
    • pp.20-30
    • /
    • 2000
  • Average annual NDVI values from the NOAA/NASA Pathfinder AVHRR Land Data Sets from 1982 to 1994 showed comprehensive systematic displacement patterns in Asia. Inter-annual growing season data, however, did not show such systematic patterns. The most likely cause for the abrupt displacements, which appear especially in 1982, 1989 and 1990, may be changes in satellite sensors, although global warming, El Ni$\tilde{n}$o-Southern Oscillation events, changes in processing algorithms, and changes in land-use patterns in various parts of Asia may also play some role. The results suggest that researchers must be extremely careful in their inter-annual global change research, since direct use of the raw data could cause unexpected results. Growing-season NDVI shows decreases throughout most of Southeast Asia and modest gains in northern China and some parts in India, which could be related to land-use and land-cover changes.

  • PDF

A Study on Modeling of Spatial Land-Cover Prediction (공간적 토지피복 예측을 위한 모형에 관한 연구)

  • 김의홍
    • Spatial Information Research
    • /
    • v.2 no.1
    • /
    • pp.47-51
    • /
    • 1994
  • The purpose of the study is to establ ish models of land Cover (use) prediction system for development and management of land resources using remotely sensed data as well as ancillary data in the context of multi-dis¬ciplinary approach in the application to CheJoo Island. The model adopts multi-date processing techniques and is a spatial/temporal land-Cover projection strategy emerged as a synthesis of the probability tra-nsition model and the discrimnant-analys is model. A discriminant modelis applied to all pixels in CheJoo landscape plane to predict the most likely change in land Cover. The probability transition model provides the number of these pixels that will convert to different land Cover in a given future time increment. The syntheric model predicts the future change in land Cover and its volume of pixels in the landscape plane.

  • PDF

Application and Usability Analysis of Local Climate Zone using Land-Use/Land-Cover(LULC) Data (토지이용/피복(LULC) 데이터를 이용한 도시기후구역의 적용가능성 분석)

  • Seung-Won KANG;Han-Sol MUN;Hye-Min PARK;Ju-Chul JUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.69-88
    • /
    • 2023
  • Efficient spatial planning is one of the necessary factors to successfully respond to climate change. And researchers often use LULC(Land-Use/Cover) data to conduct land use and spatial planning research. However, LULC data has a limited number of grades related to urban surface, so each different urban structure appearing in several cities is not easily analyzed with existing land cover products. This limitation of land cover data seems to be overcome through LCZ(Local Climate Zone) data used in the urban heat island field. Therefore, this study aims to first discuss whether LCZ data can be applied not only to urban heat island fields but also to other fields, and secondly, whether LCZ data still have problems with existing LULC data. Research methodology is largely divided into two categories. First, through literature review, studies in the fields of climate, land use, and urban spatial structure related to LCZ are synthesized to analyze what research LCZ data is currently being used, and how it can be applied and utilized in the fields of land use and urban spatial structure. Next, the GIS spatial analysis methodology is used to analyze whether LCZ still has several errors that are found in the LULC.

A Study on the Urban Fringe Landscape Environment Model -The Analysis of Change in Land Uses of Chonan City using Landsat TM Data- (도농통합지역의 녹지환경정비모델에 관한 연구 I - 위성데이타를 이용한 천안시 토지이용 변화 -)

  • 심우경;이진희;김훈희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.237-248
    • /
    • 1998
  • Landcover has been largely influenced by human activities, especially in recent days. The analysis of the change of land use by urbanized development is useful for determining development plan hereafter. This study aimed to the quantitative analysis about the urban sprawl within 12 years from 1985 to 1996, at Chonan, and for extracting the characteristics of change. For this purpose, this study performed land cover classifications using Landsat TM data . A hybrid classification method was used to classify satellite images into seven types of land cover. Road network digitied from 1:25,000 topographic map was rasterized and overlaid on the landcover map. A result of this study showed that area of forest and paddy decreased due to urban sprawl. Especially from 1993 to 1996, the change of land use progressed rapidly because of merging a city and a country in Chonan. The size of patch in forest had been smaller and irregular form. It is a general progress that size of patch in forest had been smaller and irregular form. It is a general progress that the forest have changed the paddy and bare land paddy and bare land have changed low-density urban or high-density urban. This explained how urbanized Chonan was and applied the suggeston of plan in landuse with the result of this study.

  • PDF

Prediction of Future Land use Using Times Series Landsat Images Based on CA (Cellular Automata)-Markov Technique (시계열 Landsat 영상과 CA-Markov기법을 이용한 미래 토지이용 변화 예측)

  • Lee, Yong-Jun;Pack, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.55-60
    • /
    • 2007
  • The purpose of this study is to evaluate the temporal land cover change by gradual urbanization of Gyeongan-cheon watershed. This study used the five land use of Landsat TM satellite images(l987, 1991, 2001, 2004) which were classified by maximum likelihood method. The five land use maps examine its accuracy by error matrix and administrative district statistics. This study analyze land use patterns in the past using time.series Landsat satellite images, and predict 2004 year land use using a CA-Markov combined CA(Cellular Automata) and Markov process, and examine its appropriateness. Finally, predict 2030, 2060 year land use maps by CA-Markov model were constructed from the classified images.

  • PDF

Spatial Analyses and Modeling of Landsacpe Dynamics (지표면 변화 탐색 및 예측 시스템을 위한 공간 모형)

  • 정명희;윤의중
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.227-240
    • /
    • 2003
  • The primary focus of this study is to provide a general methodology which can be utilized to understand and analyze environmental issues such as long term ecosystem dynamics and land use/cover change by development of 2D dynamic landscape models and model-based simulation. Change processes in land cover and ecosystem function can be understood in terms of the spatial and temporal distribution of land cover resources. In development of a system to understand major processes of change and obtain predictive information, first of all, spatial heterogeneity is to be taken into account because landscape spatial pattern affects on land cover change and interaction between different land cover types. Therefore, the relationship between pattern and processes is to be included in the research. Landscape modeling requires different approach depending on the definition, assumption, and rules employed for mechanism behind the processes such as spatial event process, land degradation, deforestration, desertification, and change in an urban environment. The rule-based models are described in the paper for land cover change by natural fires. Finally, a case study is presented as an example using spatial modeling and simulation to study and synthesize patterns and processes at different scales ranging from fine-scale to global scale.

  • PDF