DOI QR코드

DOI QR Code

Analysis of Spatial Information Characteristics for Establishing Land Use, Land-Use Change and Forestry Matrix

Land Use, Land-Use Change and Forestry 매트릭스 작성을 위한 공간정보 특성 고찰

  • HWANG, Jin-Hoo (Dept. of Environmental Science and Ecological Engineering, Korea University) ;
  • JANG, Rae-Ik (Environmental GIS/RS Center, Korea University) ;
  • JEON, Seong-Woo (Dept. of Environmental Science and Ecological Engineering, Korea University)
  • 황진후 (고려대학교 환경생태공학과) ;
  • 장래익 (고려대학교 환경GIS/RS 센터) ;
  • 전성우 (고려대학교 환경생태공학과)
  • Received : 2018.02.13
  • Accepted : 2018.06.15
  • Published : 2018.06.30

Abstract

The importance of establishing a greenhouse gas inventory is emerging for policymaking and its implementation to cope with climate change. Thus, it is needed to establish Approach 3 level Land Use, Land-Use Change and Forestry (LULUCF) matrix that is spatially explicit regarding land use classifications and changes. In this study, four types of spatial information suitable for establishing the LULUCF matrix were analyzed - Cadastral Map, Land Cover Map, Forest Map, and Biotope Map. This research analyzed the classification properties of each type of spatial information and compared the quantitative and qualitative characteristics of the maps in Boryeong city. Drawn from the conclusions of the quantitative comparison, the forest area showed the maximum difference of 50.42% ($303.79km^2$) in the forest map and 46.09%($276.65km^2$) in the cadastral map. The qualitative comparison drew five qualitative characteristics: data construction scope difference, data construction purpose difference, classification standard difference, and classification item difference. As a result of the study, it was evident that the biotope map was the most appropriate spatial information for the establishment of the LULUCF matrix. In addition, if the LULUCF matrix is made by integrating the biotope, the forest map, and the land cover map, the limitations of each spatial information would be improved. The accuracy of the LULUCF matrix is expected to be improved when the map of the level-3 land cover map and the biotope map of 1:5,000 covering the whole country are completed.

기후변화에 대응하기 위한 정책 수립과 이행을 위해 온실가스 인벤토리 작성의 중요성이 대두되고 있다. 이에 따라, 토지이용 항목과 변화들에 대해 공간 명시적으로 나타낸 Approach 3 수준의 Land Use, Land-Use Change and Forestry(LULUCF) 매트릭스 구축 필요성이 제기되고 있다. 본 연구에서는 LULUCF 매트릭스의 산림 항목을 중심으로 연속지적도, 중분류 토지피복지도, 임상도, 도시생태현황지도를 활용하여 LULUCF 매트릭스 구축에 적합한 공간정보를 검토하였다. 각 공간정보에 대한 분류 속성 비교를 실시하였고 충청남도 보령시를 대상으로 양적(면적) 비교, 질적(특성) 비교를 실시하였다. 양적 비교 결과 산림의 면적이 임상도에서 최고 50.42%($303.79km^2$), 지적도에서 최저 46.09%($276.65km^2$)의 차이를 보였다. 질적 비교 결과 자료 구축 범위 차이, 자료 구축 목적 차이, 분류 항목 차이, 일필일목의 원칙 적용 여부의 차이, 자료구축 시기 차이 등 5가지 질적 특성의 차이를 확인하였다. 연구 결과 도시생태현황지도가 LULUCF 매트릭스 구축에 가장 적합한 공간 정보로 판단되었으나 전국구축이 되어있지 않은 한계로 토지피복지도가 가장 적합한 것으로 검토되었다. 또한, 도시생태현황지도, 임상도, 토지피복지도 등을 서로 종합하여 LULUCF 매트릭스를 구축하게 될 경우 각 공간정보의 한계를 보완할 수 있을 것으로 사료된다. 추후 전국토를 대상으로 하는 1:5,000 수준의 세분류 토지피복지도 및 도시생태현황지도가 완료될 경우 LULUCF 매트릭스 작성의 정밀도를 향상시킬 수 있을 것으로 판단된다.

Keywords

References

  1. Boryeong-si, 2016. Boryeong-si statistics annual report, BORYEONG, KOREA (보령시, 2016. 보령시 통계연보, 보령시, 대한민국)
  2. Fuchs, H., P. Magdon, C. Kleinn and H. Flessa. 2009. Estimating above groundcarbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory. Remote Sensing of Environment 113: 518-531. https://doi.org/10.1016/j.rse.2008.07.017
  3. Greenhouse Gas Inventory and Research Center, 2016. 2016 National Greenhouse Gas Inventory Report of Korea, SEOUL, KOREA (온실가스종합정보센터, 2016. 2016 국가 온실가스 인벤토리 보고서, 서울특별시, 대한민국).
  4. Greenhouse Gas Inventory and Research Center, 2015. A Study on the GIS-based approach 3 methodologies for the land use matrix of the LULUCF Sector, SEOUL, KOREA (온실가스종합정보센터, 2016. 공간영상정보를 활용한 LULUCF 분야 토지이용 및 토지이용변화 매트릭스 구축 방안 연구, 서울특별시, 대한민국).
  5. Hong, S.E., D.H. Yi and S.H. Park. 2004. Land Category Non-coincidence measurements using high resolution satellite images and digital topographic maps, The Journal of GIS Association of Korea 12(1):43-56 (홍성언, 이동헌, 박수홍, 2004. 고해상도 위성영상과 수치지형도를 이용한 지목 불부합의 정도 측정, 한국공간정보학회 12(1):43-56).
  6. IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IGES, JAPAN.
  7. Kim, J.H. and K.W. Kwon. 2011. The subdivision method of land category for the efficient registration of land use in building site, Journal of the Korean cadastre information association 6(1): 65-79 (김준현, 권기욱, 2011."대"지목의 효율적 토지이용 등록을 위한 지목세분화 방안, 한국지적학회 6(1):65-79).
  8. Korea Forest Research Institute, 2011. Production of the fifth forest map using aerial photograph DB data, SEOUL, KOREA (국립산림과학연구원, 2011. 항공사진 DB자료를 활용한 제5차 임상도 제작, 서울특별시, 대한민국).
  9. Korea Forest Service, 2016. 2016 Statistical Yearbook of Forestry, DAEJEON, KOREA (산림청, 2016. 2016 산림통계연보, 대전광역시, 대한민국).
  10. Ministry of Environment, 2013. Demonstration project for National Environmental Map, SEJONG, KOREA (환경부, 2013. 국가환경지도 구축 시범사업, 세종특별자치시, 대한민국).
  11. Miphokasap, P., 2017. Spatial inventory of CO2 emissions and removals from land use and land use changes in Thailand, Chemical Engineering Transactions 56: 13-18.
  12. Park, S.C., B.H. Han, M.J. Park, H.D. Yun and M.J. Kim, 2016. A study on the possibility of utilizing both biotope maps and land cover maps on the calculation of the ecological network indicator of city biodiversity index, J. KILA 44(6): 73-83 (박석철, 한봉호, 박민진, 윤형두, 김명진, 도시생물다양성 지수(CBI) 중 생태네트워크 산정을 위한 도시생태현황지도 및 토지피복지도 활용 가능성 연구, 한국조경학회 44(6):73-83).
  13. Stahl, G., J. Heikkinen, H. Petersson, J. Repola and S. Holm. 2014. Sample-based estimation of greenhouse gas emissions from forests-a new approach to account for both sampling and model errors, Forest Science 60(1):3-13. https://doi.org/10.5849/forsci.13-005
  14. Yoon, J.D., H.J. Lee, D.G. Yoon and C.S. Seo. 2009. An examination of the cadastral system and its efficient adjustment, Journal of the Korean cadastre information association 12(2): 247-266 (윤정득, 이현정, 윤동건, 서철수, 2009. 지목체계의 효율적 개선방안에 관한 연구, 한국지적학회지 25(2): 247-266).
  15. Yu, S.C., J.W. Ahn and J.A. Ok, 2013. A study on construction plan of the statistics for national green house gas inventories(LULUCF SECTOR), Journal of Korea Spatial Information Society 23 (3):67-77 (우선철, 안종욱, 옥진아, 2013. 국가 온실가스 인벤토리 LULUCF 부문 통계 구축방안에 관한 연구, 한국공간정보학회 23(3):67-77).