DOI QR코드

DOI QR Code

Application and Usability Analysis of Local Climate Zone using Land-Use/Land-Cover(LULC) Data

토지이용/피복(LULC) 데이터를 이용한 도시기후구역의 적용가능성 분석

  • Seung-Won KANG (Urban Planning & Engineering, Pusan National University) ;
  • Han-Sol MUN (Urban Planning & Engineering, Pusan National University) ;
  • Hye-Min PARK (Urban Planning & Engineering, Pusan National University) ;
  • Ju-Chul JUNG (Urban Planning & Engineering, Pusan National University)
  • 강승원 (부산대학교 도시공학과 ) ;
  • 문한솔 (부산대학교 도시공학과 ) ;
  • 박혜민 (부산대학교 도시공학과 ) ;
  • 정주철 (부산대학교 도시공학과 )
  • Received : 2023.02.01
  • Accepted : 2023.03.03
  • Published : 2023.03.31

Abstract

Efficient spatial planning is one of the necessary factors to successfully respond to climate change. And researchers often use LULC(Land-Use/Cover) data to conduct land use and spatial planning research. However, LULC data has a limited number of grades related to urban surface, so each different urban structure appearing in several cities is not easily analyzed with existing land cover products. This limitation of land cover data seems to be overcome through LCZ(Local Climate Zone) data used in the urban heat island field. Therefore, this study aims to first discuss whether LCZ data can be applied not only to urban heat island fields but also to other fields, and secondly, whether LCZ data still have problems with existing LULC data. Research methodology is largely divided into two categories. First, through literature review, studies in the fields of climate, land use, and urban spatial structure related to LCZ are synthesized to analyze what research LCZ data is currently being used, and how it can be applied and utilized in the fields of land use and urban spatial structure. Next, the GIS spatial analysis methodology is used to analyze whether LCZ still has several errors that are found in the LULC.

효율적인 공간계획은 기후변화에 성공적으로 대응하기 위해 필요한 요소 중 하나이다. 연구자들은 흔히 토지이용 및 공간계획 연구를 수행하기 위해 LULC(Land-Use/Land-Cover) 데이터를 활용하고 있다. 그러나 LULC 데이터는 어떠한 도시 표면의 특징을 분류할 수 있는 조건이 몇 가지로 한정되어 있어 여러 도시에서 나타나는 각기 다른 도시구조를 기존 토지피복 분류법으로는 쉽게 분석할 수 없다. 이러한 토지피복 자료의 한계는 도시 열섬 분야에서 사용되는 LCZ(Local Climate Zone) 자료를 통해 극복될 것으로 보인다. 따라서 본 연구는 먼저 LCZ 데이터가 도시 열섬 분야뿐만 아니라 다른 분야에도 적용될 수 있는지를 논의하고, 두 번째로 LCZ 데이터가 기존 LULC 데이터의 문제점을 동일하게 가지는지 논의하는 것을 목적으로 한다. 연구 방법론은 크게 두 가지로 진행된다. 첫째, 문헌고찰을 통해 LCZ와 관련된 기후, 토지이용, 도시공간구조 분야의 연구를 종합하여 현재 어떤 연구에 LCZ 데이터가 활용되고 있는지, 토지이용과 도시공간구조 분야에서 어떻게 적용·활용될 수 있는지 분석한다. 다음으로 GIS 공간분석을 활용하여 LCZ 데이터도 역시 LULC 데이터에 내재한 몇 가지 오류를 공유하고 있는지에 대해 비교·분석한다.

Keywords

Acknowledgement

본 연구는 환경부 「기후변화특성화대학원사업」의 지원으로 수행되었으며, 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2022R1A2C10077131162182065300101).

References

  1. Alexander, P.J., Bechtel, B., Chow, W.T., Fealy, R., and Mills, G. 2016. Linking urban climate classification with an urban energy and water budget model: Multisite and multi-seasonal evaluation. Urban Climate. 17:196-215. https://doi.org/10.1016/j.uclim.2016.08.003
  2. Alexander, P.J., Mills, G., and Fealy, R. 2015. Using LCZ data to run an urban energy balance model. Urban Climate. 13:14-37. https://doi.org/10.1016/j.uclim.2015.05.001
  3. Aslam, A., Rana, I.A., and Bhatti, S.S. 2022. Local climate zones and its potential for building urban resilience: a case study of Lahore, Pakistan. International Journal of Disaster Resilience in the Built Environment. 13(2):248-265. https://doi.org/10.1108/IJDRBE-08-2021-0116
  4. Baek, S.H. and E.H. Jung. 2009. A Study on Microclimate Change Via Time Series Analysis of Satellite Images -Centered on Dalseo District, Daegu City-. Journal of the Korean Association of Geographic Information Studies. 12(2):34-43.
  5. Bansal, P. 2019. Urban Form Classification under Local Climate Zone Framework for Energy Efficient City Development. Master. Thesis, Univ. of Seoul, Seoul, Korea.
  6. Bechtel, B. 2011. Multitemporal Landsat data for urban heat island assessment and classification of local climate zones. In 2011 Joint Urban Remote Sensing Event 129-132. IEEE. Germany, Apr. 11-Apr. 13, 2011. pp129-132.
  7. Bechtel, B., and Daneke, C. 2012 Classification of Local Climate Zones Based on Multiple Earth Observation Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 5(4):1191-1202. https://doi.org/10.1109/JSTARS.2012.2189873
  8. Bechtel, B., Foley, M., Mills, G., Ching, J., See, L., Alexander, P., ... and Gal, T.M. 2015. CENSUS of cities: LCZ classification of cities (level 0)-workflow and initial results from various cities. 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment. June. 30. 2015.
  9. Cao, Q., Luan, Q., Liu, Y., and Wang, R. 2021. The effects of 2D and 3D building morphology on urban environments: A multi-scale analysis in the Beijing metropolitan region. Building and Environment. 192:107635.
  10. Castilla, G., and Hay, G.J. 2007. Uncertainties in land use data. Hydrology and Earth System Sciences. 11(6):1857-1868. https://doi.org/10.5194/hess-11-1857-2007
  11. Cha, J.G., E.H. Jung, J.W. Ryu and D.W. Kim. 2007. Constructing a Green Network and Wind Corridor to Alleviate the Urban Heat-Island. Journal of the Korean Association of Geographic Information Studies. 10(1):102-112.
  12. Chieppa, J., Bush, A., and Mitra, C. 2018. Using"Local Climate Zones"to detect urban heat island on two small cities in alabama. Earth Interactions. 22(16):1-22. https://doi.org/10.1175/EI-D-17-0020.1
  13. CRED, UNDRR. Human cost of disasters: an overview of the last 20 years 2000-2019, 2020.
  14. Comber, A.J. 2008. Land Cover or Land Use?. Journal of Land Use Science. 3(4):199-201. https://doi.org/10.1080/17474230802465140
  15. Demuzere, M., Kittner, J., and Bechtel, B. 2021. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Frontiers in Environmental Science. 9:637455.
  16. Emmanuel, R., and Kruger, E. 2012. Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment. 53:137-149. https://doi.org/10.1016/j.buildenv.2012.01.020
  17. Gamba, P., Lisini, G., Liu, P., Du, P., and Lin, H. 2012. Urban climate zone detection and discrimination using object-based analysis of VHR scenes. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, May. 7-May. 9, 2012. pp.70-79.
  18. Grekousis, G., Mountrakis, G., and Kavouras, M. 2015. An overview of 21 global and 43 regional land-cover mapping products. International Journal of Remote Sensing. 36(21):5309-5335 https://doi.org/10.1080/01431161.2015.1093195
  19. Hammerberg, K., Brousse, O., Martilli, A., and Mahdavi, A. 2018. Implications of employing detailed urban canopy parameters for mesoscale climate modelling: a comparison between WUDAPT and GIS databases over Vienna, Austria. International Journal of Climatology. 38(S1):e1241-e1257. https://doi.org/10.1002/joc.5447
  20. Han, G.Y. 2007. A study on Andres Duany's Planning Theory. Seoul Studies. 8(2):35-50. https://doi.org/10.23129/SEOULS.8.2.200706.35
  21. Heidger, L., Leconte, F., Quirino, R., and Petrissans, M. 2021. Environmental Justice in Climate Change Adaptation Context: A Case Study in Atlanta, Georgia, Using Local Climate Zones and Sociodemographic Indicators. In American Geophysical Union Fall Meeting. New Orleans, LA, December. 13-December. 17. 2021.
  22. Hurlimann, A.C., and March, A.P. 2012. The role of spatial planning in adapting to climate change. Wiley Interdisciplinary Reviews: Climate Change. 3(5):477-488. https://doi.org/10.1002/wcc.183
  23. J„rvi, L., Havu, M., Ward, H.C., Bellucco, V., McFadden, J.P., Toivonen, T., ... and Grimmond, C.S.B. 2019. Spatial modeling of local-scale biogenic and anthropogenic carbon dioxide emissions in Helsinki. Journal of Geophysical Research: Atmospheres. 124(15):8363-8384. https://doi.org/10.1029/2018JD029576
  24. Leconte, F., Bouyer, J., Claverie, R., and P‰trissans, M. 2015. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment. 83:39-49.
  25. Lelovics, E., Unger, J., Gal, T., and Gal, C.V. 2014. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Climate research. 60(1):51-62. https://doi.org/10.3354/cr01220
  26. Liu, L., Lin, Y., Xiao, Y., Xue, P., Shi, L., Chen, X., and Liu, J. 2018. Quantitative effects of urban spatial characteristics on outdoor thermal comfort based on the LCZ scheme. Building and Environment. 143:443-460. https://doi.org/10.1016/j.buildenv.2018.07.019
  27. Middel, A., Hab, K., Brazel, A.J., Martin, C.A., and Guhathakurta, S. 2014. Impact of urban form and design on midafternoon microclimate in Phoenix Local Climate Zones. Landscape and urban planning. 122:16-28. https://doi.org/10.1016/j.landurbplan.2013.11.004
  28. Mun, H.S., B.G. Song, G.H. Seo, T.H. Kim and G.H. Park. 2020. Analysis of PM2.5 Distribution Contribution using GIS Spatial Interpolation -Focused on Changwon-si Urban Area-. Journal of the Korean Association of Geographic Information Studies. 23(2):1-20.
  29. Muller, D., and Munroe, D.K. 2014. Current and future challenges in land-use science. Journal of Land Use Science. 9(2):133-142. https://doi.org/10.1080/1747423X.2014.883731
  30. Patel, P., Karmakar, S., Ghosh, S., and Niyogi, D. 2020. Improved simulation of very heavy rainfall events by incorporating WUDAPT urban land use/land cover in WRF. Urban Climate. 32:100616.
  31. Perera, N.G.R., and Emmanuel, R. 2018. A "Local Climate Zone" based approach to urban planning in Colombo, Sri Lanka. Urban Climate. 23:188-203. https://doi.org/10.1016/j.uclim.2016.11.006
  32. Rannow, S., Loibl, W., Greiving, S., Gruehn, D., and Meyer, B.C. (2010). Potential impacts of climate change in Germany-identifying regional priorities for adaptation activities in spatial planning. Landscape and urban planning. 98(3-4):160-171. https://doi.org/10.1016/j.landurbplan.2010.08.017
  33. Ren, C., Wang, R., Cai, M., Xu, Y., Zheng, Y., and Ng, E. 2016. The accuracy of LCZ maps generated by the world urban database and access portal tools (WUDAPT) method: A case study of Hong Kong. In 4th Int. Conf. Countermeasure Urban Heat Islands, Singapore. May. 30-June. 1. 2016.
  34. Sanchez, A., Heijden, J., and Osmond, P. 2018. The City Politics of an Urban Age : Urban Resilience Conceptualisations and Policies. Palgrave Communications. 4(25):1-12. https://doi.org/10.1057/s41599-017-0055-7
  35. Savic, S., Kalfayan, M., and Dolinaj, D. 2020. Precipitation spatial patterns in cities with different urbanisation types: Case study of Novi Sad (Serbia) as a medium -sized city. Geographica Pannonica. 24(2):88-99. https://doi.org/10.5937/gp24-25202
  36. Schewenius M., McPhearson T, and Elmqvist T. 2014. Opportunities for Increasing Resilience and Sustainability of Urban Social-ecological Systems: Insights from the URBES and the Cities and Biodiversity Outlook Projects. AMBIO. 43(4):434-444. https://doi.org/10.1007/s13280-014-0505-z
  37. Sharifi, A., and Javadpoor, M. 2020. Spatial Analysis of Building-related Urban CO2 Emissions Based on the Local Climate Zones Classification System. International Conference on Applied Energy 2020.
  38. Bangkok, Thailand, Nov. 29-Dec. 2. 2020. Shi, Y., Ren, C., Lau, K.K.L., and Ng, E. 2019. Investigating the influence of urban land use and landscape pattern on PM2. 5 spatial variation using mobile monitoring and WUDAPT. Landscape and urban planning. 189:15-26. https://doi.org/10.1016/j.landurbplan.2019.04.004
  39. Stewart, I.D. 2011. Redefining the urban heat island. Ph.D. Thesis., Univ. of British Columbia, Vancouver, Canada.
  40. Stewart, I.D., and Oke, T.R. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society. 93(12):1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  41. Van Buuren, A., Driessen, P.P., van Rijswick, M., Rietveld, P., Salet, W., Spit, T., and Teisman, G. 2013. Towards adaptive spatial planning for climate change: Balancing between robustness and flexibility. Journal for European Environmental & Planning Law. 10(1):29-53. https://doi.org/10.1163/18760104-01001003
  42. Verburg, P.H. 2006. Simulating feedbacks in land use and land cover change models. Landscape Ecology. 21(8):1171-1183. https://doi.org/10.1007/s10980-006-0029-4
  43. Verburg, P.H., Neumann, K., and Nol, L. 2011. Challenges in using land use and land cover data for global change studies. Global change biology. 17(2):974-989. https://doi.org/10.1111/j.1365-2486.2010.02307.x
  44. Wang, G.I. 2008. The role of spatial planning and response strategies in preparation for climate change. KRIHS Policy Brief. 198:1-8.
  45. Wicki, A. and Parlow, E. 2017. Attribution of local climate zones using a multitemporal land use/land cover classification scheme. Journal of Applied Remote Sensing, 11(2):026001-026001. https://doi.org/10.1117/1.JRS.11.026001
  46. Wilson, E. 2006. Adapting to climate change at the local level: the spatial planning response. Local environment. 11(6):609-625. https://doi.org/10.1080/13549830600853635
  47. Wilson, E., and Piper, J. 2010. Spatial planning and climate change. Routledge. UK.
  48. Wu, Y., Sharifi, A., Yang, P., Borjigin, H., Murakami, D., and Yamagata, Y. 2018. Mapping building carbon emissions within local climate zones in Shanghai. Energy Procedia. 152:815-822. https://doi.org/10.1016/j.egypro.2018.09.195
  49. Xue, J., You, R., Liu, W., Chen, C., and Lai, D. 2020. Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability. 12(19):8083.
  50. Yang, X., Peng, L. L., Jiang, Z., Chen, Y., Yao, L., He, Y., and Xu, T. 2020. Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing. Applied Energy. 260:114279.
  51. Yang, H., Leng, Q., Xiao, Y., and Chen, W. 2022. Investigating the impact of urban landscape composition and configuration on PM2. 5 concentration under the LCZ scheme: A case study in Nanchang, China. Sustainable Cities and Society. 84:104006.
  52. Zhang, Y., Zhang, J., Zhang, X., Zhou, D., and Gu, Z. 2020. Analyzing the characteristics of UHI (urban heat island) in summer daytime based on observations on 50 sites in 11 LCZ (local climate zone) types in Xi'an, China. Sustainability. 13(1):83.