• Title/Summary/Keyword: Land creeping

Search Result 23, Processing Time 0.025 seconds

Effect of Seeding Rates on Turf Vegetation of Creeping Bentgrass (파종량이 Creeping Bentgrass 잔디초지의 식생에 미치는 영향)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Cho, Young-Il;Park, Sung-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2005
  • This study was conducted from March 21 to July 7 in 2004 at JeJu Island to investigate the influences of seed-ing rates (4, 6, 5, 10 and 12 kg/10a) on creeping bentgrass vegetation. The result obtained were summarized as follows; plant height was getting longer as seeding rate increased from 4 to 12 kg/10a, Although it was no significance from 10 to 12 kg/10a. Root length, Minolta SPAD-502 chlorophyll reading value, leave and root weight increased as the plant height increased. The degree of land cover and density of creeping bentgrass also increased as seeding rate increased from 4 to 12 kg/10a, and the degree of land cover and density of weed decreased. The number of weed species on decreased as increasing of seeding rate. Then ranking of the dominant weeds were Digitaria adscendens, Chenopodium album var. centrorubrum md Poa annua (at 4 kg/10a seeding rate), Digitaria adscendens, Chenopodium album var. centrorubrum and Stellaria media (at 6 kg/10a seeding rate). Chenopdium album var. centrorubrum, Poa annua and Digitaria adscendens (at 8 kg/10a seeding rate), Digitaria adscendens, Chenopdium album var. centrorubrum and Steilaria media (at 10 kg/10a seeding rate), Chenopdium album var. centrorubrum, Digitaria adscendens and Stellaria media (at 12 kg/10a seeding rate). These results showed that the optimum seed-ing rate is 10 kg/10a for growth of creeping bentgrass in volcanic ash soils of Juju island.

Effect of Sand Particle Sizes on Turf Vegetation of Creeping Bentgrass (모래입경이 Creeping Bentgrass 잔디 초지의 식생에 미치는 영향)

  • Park Sung-Jun;Cho Nam-Ki;Kang Young-Kil;Song Chang-Khil;Cho Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.205-210
    • /
    • 2005
  • This study was conducted from March 21 to July 9 in 2004 at JeJu Island to investigate the effect of different particle sizes (0.3-0.5, 0.5-0.8, 0.8-1.0, 1.0-1.5 and 1.5-2.0mm) on creeping bentgrass vegetation. The results obtained were summarized as follows; plant height became shorter as particle size was increased from 0.3-0.5 to 1.5-2.0 n. Root length, Minolta SPAD-502 chlorophyll reading value, leave and root weight were directly proportional plant height response. Degree of land cover and density of creeping bentgrass decreased as the particle size was increased from 0.3-0.5 to 1.5-2.0nm, and degree land cover and density of weed increased. The number of weed species were increased as the sand particle size was increased. Then ranking of the dominant weeds were Portulaca oleracea, Trifolium repens and Cyperus amuricus (at 0.3-0.5 and 0.5-0.8mm particle size), Trifolium repens, Portulaca oleracea and Polygonum hydropiper (at 0.8-1.0mm particle size), Portulaca oleracea, Polygonum hydropiper and Poa annua (at 1.5-2.0mm particle size). Based on the these findings, the optimum sand particle size for growth of creeping bentgrass seems to be about 0.3-0.5m in volcanic ash soils of Jeju island.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Influences of Worm Casting Organic Fertilizer on Weed Invasion on the Creeping Bentgrass Sward (지렁이분 시비가 잡초의 침입과 벤트그라스 잔디초지에 미치는 영향)

  • Park Sung-Jun;Cho Nam-Ki;Kang Young-Kil;Song Chang-Khil;Hyun Hae Nam;Cho Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2005
  • This study was conducted from March 21 to July 10 in 2004 at JeJu to investigate the influences of worm casting organic fertilizer rates (0, 150, 300, 450, 600 kg/10a) on creeping bentgrass sward. The result obtained were summarized as follows; plant height was getting longer as organic fertilizer increased from 0 to 600 kg/10a. But it was no significance from 450 to 600kg/10a. Root length, SPAD reading value, leave and root weight were the same trend with plant height response. Percentage of land cover and density of creeping bentgrass increased as fertilizer rate increased from 0 to 600 kg/10a. But percentage of land cover and density of weed decreased. Number of weed species were decreased as increasing of organic fertilizers. Then ranking of the dominant weeds were Chenopodium album var. cetrorubrum and Digitaria adscendens, Polygonum hydropiper (at 0kg/10a), Portulaca oleracea and Digitaria adscendens, Polygonum hydropiper (at 150kg/10a), Polygonum hydropiper and Poa annua, Digitaria adscendens (at 450 kg/10a), Polygonum hydropipr and Digitaria adscendens, Portulaca oleracea (at 600 kg/10a).

Effect of Sowing Dates on Turf Vegetation of Creeping Bentgrass (파종기에 따른 Creeping Bentgrass 잔디초지의 식생변화)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Cho, Young-Il;Park, Sung-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.125-130
    • /
    • 2005
  • This study was conducted from March 16 to July 6 in 2004 at Jeju Island to investigate the influences of sowing dates(on March 16, March 26, April 5, April 15 and April 25) on creeping bentgrass vegetation. The result obtained were summarized as follows; Plant height was 22.7 cm at March 16 planting. It was longest but after that planting, plant height gradually shorted. Then it was shortest at April 25 planting(16.6 cm). Root length and Minolta SPAD-502 chlorophyll reading value were directly proportional plant height response. Leave and root weight were greatest at March 16 planting. It were 1,373 kg /10a and 2,374 kg /10a, respectively. These weight decreased gradually as planting was delayed from March 16 to April 25. Degree land cover and density of creeping bentgrass were $98.0\%$ and $99.3\%$, respectively, at March 16. After that planting they were decreased ($97.5\%$, $98.7\%$). But degree land cover and density of weed tended to increased gradually as the planting was delayed. The number of weed species were increased from March 16 to April 25. It showed increase that Poa annua, Stellaria media and Chenopodium album var. centrorubrum(at March 16 planting), Poa annua, Digitaria adscendens and Chenopodium album var. centrorubrum(at March 26 planting), Digitaria adscendens, Chenepodium album var. centrorubrum and Stellaria media(at April 5 planting), Digitaria adscendens, Stellaria media and Chenopodium album var. centrorubrum(at April 15 planting), Digitaria adscendens, Polygonum hydropiper, Chenopodium album var. centrorubrum(at April 25 planting). Based on the these findings, optimum sowing date for growth of creeping bentgrass seems to be about early seeding in atmospheric phenomena and volcanic ash soils of Jeju island.

Growth Evaluation of 10 Cultivars of Creeping Bentgrass in Salt Affected Environment (염해지에서 크리핑벤트그래스 10개 품종의 생육 비교)

  • Kim, Jun-Beom;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2008
  • This study was carried out to examine the growth performance of 10 cultivars of creeping bentgrass under salt injury in Seo-san reclaimed area. Turfgrass performance studies included 10 creeping bentgrass cultivars (T-1, L-93, Penn A1, Pennlinks II, Seaside II, Declaration, Penn A4, Crenshaw, Dominant, and Penncross). Ten creeping bentgrass cultivars were grown on a USGA recommended research green. Plots were seeded on May 31, 2006 at the rate of $7\;g{\cdot}m^{-1}$. Electric conductivities of irrigation water (ECw) and soil (ECe) were ranged from 0.28 to $3.3\;d\;S{\cdot}m^{-1}$ and from 0.25 to $3.5\;d\;S{\cdot}m^{-1}$ respectively. Leaf color, turf quality, coverage rate, and growth rate were checked under the salty condition in reclaimed land for 2 year. Creeping bentgrass cultivars of T-1, Penn links, and Crenshaw presented dark green color and Penn A1, Declaration showed lighter green color. Penn A1, Penn A4 and L-93 exhibited the highest overall turfgrass quality. Average visual coverage was 75.3% after eleven weeks after seeding. Dominant, L-93, and Penn A1 resulted in higher visual coverage compared to the other cultivars. There was no difference in density among cultivars at 1 year after establishment. However, Declaration, Penn A1, T-1, and L-93 showed higher density compared to the other cultivars at 2 years after seeding. Creeping bentgrass showed different quality, density and color in salty soil (ECe: $0.25-3.5\;d\;S{\cdot}m^{-1}$) and from application of salty irrigation water (ECw: $0.28-3.3\;d\;S{\cdot}m^{-1}$) conditions. These results will be useful where selecting green cultivars for the golf courses in reclaimed land area.

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.

Effects of Capillary Water Interruption Layer on the Growth of Zoysiagrasses and Cool-season Turfgrasses in Reclaimed Land (염해지에서 모세관수 차단층 설치 유무에 따른 한국잔디 및 한지형 잔디류의 생육)

  • Kim, Jun-Beom;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • This study was carried out to examine the growth performance of 4 species of cool-season grasses and 4 species of zoysiagrasses under salt injury in Seo-san reclaimed area. Grasses were grown on the plots with capillary water interruption layer (WCWIL) and without capillary water interruption layer (WOCWIL) soil systems. Cool-season grass and seeding-type zoysiagrass plots were seeded on 6 Jun, 2006. Vegetative zoysiagrass 'Junggi' was established by sprigging and 'Senock' and 'Millock' were plugged. Electric conductivities of irrigation water (ECw) ranged from 0.28 to $3.3\;dS{\cdot}m^{-1}$. Electric conductivities (ECe) of the soil with capillary water interruption layer and without capillary water interruption layer ranged from 0.55 to $9.4\;dS{\cdot}m^{-1}$ and from 1.84 to $9.4\;dS{\cdot}m^{-1}$ respectively. Leaf color, turf quality, coverage rates, and growth rates were rated visually for 2 years. Zoysiagrass 'Junggi', creeping bentgrass, zoysiagrass 'Senock' and 'Millock' showed acceptable growth at salty fairway condition, while Kentucky bluegrass, perennial ryegrass, Kentucky bluegrass mixed with perennial ryegrass, and seeded zoysiagrass 'Zenith' showed establishment rates below 70%. These results will be useful when choosing turf grass species and cultivars for the golf courses in reclaimed land area.

The Effects of Geological and Topographical Features on Landslide and Land-creep (지질(地質)과 지형(地形)이 산사태(山沙汰) 및 땅밀림에 미치는 영향(影響))

  • Jau, Jae-Gyu;Park, Sang-Jun;Son, Doo-Sik;Joo, Sung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.323-334
    • /
    • 2000
  • This study was carried out to investigate the effects of geological and topographical features on landslide and land-creep at the twenty four surveyed sites of Kyungpook province. According to the results obtained, it was concluded that continuous heavy rainfall was one of the primary factors to occur landslide and land-creep. Most of the landslides occurred in the past were concentrated in the granite and granitic gneiss zones, while land-creeps were mainly occurred in the mud-stone zones. Therefore, it was thought that the physical properties such as soil texture, solid phase, moisture contents, density, hardness and porosity rate of weathered granite and granitic gneiss could affect the occurrence of landslide and land-creep. Due to the holding of sand contents in the upper soil layers of weathered granite and granitic gneiss, rainfall could infiltrate into the soil easily. While lower soil layers contained much quantity of clay and silt contents, those soils saturated with rainfall cause to lose viscosity and shear strength. Therefore, it was seemed that landslide was occurred more easily and the saturation of those soils was made much easily by bed rocks under those soils. Landslide and land-creep are slided into lower place by gravitation and slope degree factors. Therefore, prediction of landslide occurrence is very difficult because landslide is occurred abruptly, and physical properties of the soil have to be understood and checking the existence of bed rocks under the soils is not easy, on the other hand, land-creep is progressed very slowly. Therefore, it was suggested that in a degree creeping could be protected by removing of several causing factors.

  • PDF

Livestock grazing and trampling effects on plant functional composition at three wells in the desert steppe of Mongolia

  • Narantsetseg, Amartuvshin;Kang, Sinkyu;Ko, Dongwook
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.103-110
    • /
    • 2018
  • Backgrounds: In arid grasslands, wells are subject to heavy trampling and grazing pressure, which can increase vulnerability to local land degradation. To investigate trampling and grazing, we surveyed plant communities at three well sites in the desert steppe of Mongolia, using 1600-m line transects from the wells. The sites (Bshrub, Sshrub, and shrubL) differed by concomitant shrub type (big shrub, small shrub, and shrub-limited) and livestock pressure (light, medium, and heavy). A plant classification scheme based on edibility and morphology (rosette or creeping type) was used to separate grazing and trampling effects on plant communities. Results: Edible plants were dominant at all sites but a fraction of grazing- and trampling-tolerant plants increased in the order Bshrub, Sshrub, and shrubL, following livestock pressure. Clear transition zones from inedible to edible plant groups were recognized but at different locations and ranges among the sites. Trampling-tolerant plants explained 90% of inedible plants at Sshrub with camels and horses, but grazing-tolerant plants prevailed (60%) at shrubL with the largest livestock number. Plant coverage increased significantly along the transects at Bshrub and Sshrub but showed no meaningful change at shrubL. Herbaceous plant biomass showed significant positive and negative trends at Bshrub and shrubL, respectively. Conclusions: Both grazing and trampling can produce larger fractions of inedible plants; in this, camel and horses can have considerable effects on desert-steppe plant communities through trampling.