Browse > Article
http://dx.doi.org/10.9720/kseg.2022.1.157

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping  

Kim, Jeong-In (Department of Earth & Environmental Science, Chungbuk National University)
Kim, Ji-Soo (Department of Earth & Environmental Science, Chungbuk National University)
Ahn, Young-Don (BOMIN Global Co., Ltd.)
Kim, Won-Ki (Maritime Technology Research Institute, Agency for Defense Development)
Publication Information
The Journal of Engineering Geology / v.32, no.1, 2022 , pp. 157-171 More about this Journal
Abstract
Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.
Keywords
electrical resistivity array; depth resolution; sensitivity distribution; land creeping; weathered layer;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim, K.S., Lee, J.H., Ju, H.T., Jung, J.Y., Chae, N.Y., Chi, J.H., Kwon, M.J., Lee, B.Y., Wegener, J., Kim, J.S., 2021b, Time-lapse electrical resistivity tomography and ground penetrating radar mapping of the active layer of permafrost across a snow fence in Cambridge Bay, Nunavut Territory, Canada: Correlation interpretation using vegetation and meteorological data, Geosciences Journal, 25(6), 877-890.   DOI
2 Kim, E.M., Cho, I.K., Kim, K.S., Yong, H.H., 2018, Temperature effects in the resistivity monitoring at embankment dams, Geophysics and Geophysical Exploration, 21(2), 82-93 (in Korean with English abstract).   DOI
3 Diprowin, 2000, Electrical resistivity dipole-dipole processing software, Hisong Ltd., Korea.
4 Kim, J.H., Yi, M.J., Song, Y.H., Chung, S.H., 2001, A comparison of electrode arrays in two-dimensional resistivity survey, Journal of the Korean Society of Mineral and Energy Resources Engineers, 38(2), 116-128 (in Korean with English abstract).
5 Cho, K.S., Kim, J.I., Kim, J.W., Kim, J.S., 2021, Crossplot interpretation of electrical resistivity and seismic velocity values for mapping weak zones in levees, The Journal of Engineering Geology, 31(4), 507-522 (in Korean with English abstract).   DOI
6 Plummer, C.C., McGeary, D., 1996, Physical geology, 7th ed., WCB, Upper Saddle River, 539p.
7 Yi, M.J., Kim, J.H., Song, Y.H., Chung, S.H., 2000, Dam seepage investigation using two- and three-dimensional resistivity surveys, Proceedings of the 2nd Special Symposium, KSEG, Daejeon, 41-53.
8 Baker, R.D., 1979, Signal contribution sections and their use in resistivity studies, Geophysical Journal International, 59(1), 123-129.   DOI
9 Butt, C.R.M., 1982, History and characteristics of weathering in australia, Geochemical Exploration in Deeply Weathered Terrain, CSIRO Division of Mineralogy Short Course, 9-18.
10 Cho, I.K., Yong, H.H., 2019, 3D resistivity survey for dam safety inspection, Geophysics and Geophysical Exploration, 22(3), 99-106 (in Korean with English abstract).   DOI
11 Dey, A., Meyer, W.H., Morrison, H.F., Dolan, W.M., 1975, Electric field response of two-dimensional inhomogeneities to unipolar and bipolar electrode configurations, Geophysics, 40(4), 630-640.   DOI
12 Keller, E.A., 2008, Introduction to environmental geology, Pearson, Prentice Hall, Dubuque, 661p.
13 Nabighian, M.N., 1994, Electromagnetic methods in applied geophysics: Volume 1, Theory (Investigations in Geophysics No.3), Society of Exploration Geophysicists, 513p.
14 Kim, J.I., Kim, J.S., Lee, S.J., Cho, K.S., Kim, J.W., 2021a, Interpretation of electrical resistivity tomogram with contents of clay minerals for the land creeping area, The Journal of Engineering Geology, 31(2), 187-197 (in Korean with English abstract).   DOI
15 Kim, S.W., Moon, S.J., Kim, W.K., Min, D.J., Jung, H.K., Cho, S.I., Lee, H.S., 2014, Numerical analysis on feasibility of electrical and electromagnetic methods for detection of an anomalous body in seawater, Proceedings of the Spring Symposium, KAIS, Daejeon, 759-761.
16 Lee, S.J., Kim, J.S., Kim, K.S., Kwon, I.R., 2020, Delineation of the slip weak zone of land creeping with integrated geophysical methods and slope stability analysis, The Journal of Engineering Geology, 30(3), 289-302 (in Korean with English abstract).   DOI
17 Lim, S.K., 2018, Analysis of a weak zone in embankment close to a drainage using resistivity monitoring data, Geophysics and Geophysical Exploration, 21(1), 8-14 (in Korean with English abstract).   DOI
18 Min, D.J., Jung, H.K., Park, S.G., Chon, H.T., Kwak, N.E., 2008, A study of feasibility of dipole-dipole electric method to metallic ore-deposit exploration in Korea, Mulli-Tamsa, 11(3), 250-262 (in Korean with English abstract).
19 Palacky, G.J., 1986, Geological background to resistivity mapping, In: Palacky, G.J. (Ed.), Airborne Resistivity Mapping, Geological Survey of Canada, 86-22, 19-27.
20 Park, S.G., Kim, J.H., Cho, S.J., Yi, M.J., 2004, Electrical resistivity characteristic of soil, Proceedings of the Korean Geotechnical Society Spring Conference, Seoul, 847-854.
21 Roy, A., Apparao, A., 1971, Depth of investigation in direct current methods, Geophysics, 36(5), 943-959.   DOI
22 Song, S.H., Kwon, B.D., Yang, J.M., Chung, S.H., 2002, Application of SP survey and numerical modeling to the leakage problem of irrigation facilities, Geophysics and Geophysical Exploration, 5(4), 257-261 (in Korean with English abstract).
23 Song, S.H., Yong, H.H., Lee, G.S., Cho, I.K., 2019, Safety analysis of reservoir dikes in South Korea through the interpretation of the electrical resistivity data considering three-dimensional structure, Geophysics and Geophysical Exploration, 22(3), 160-167 (in Korean with English abstract).   DOI
24 Yoon, J.R., Kim, J.M., Choi, B.H., 2005, Assessment of levee safety using electrical surveys, Journal of the Korean Geophysical Society, 8(2), 53-61 (in Korean with English abstract).