• Title/Summary/Keyword: Laminate Angle

Search Result 117, Processing Time 0.028 seconds

An Experiment Study On the Stress-Strain Behavior of Concrete Columns Strengthened with Carbon Fiber Laminate (CFS보강 콘크리트 기둥부재의 응력-변형률 거동에 관한 실험적 연구)

  • 장일영;이상호;박훈규;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.509-512
    • /
    • 1999
  • Recently, the Carbon Fiber Sheet(CFS) is widely used to structure. But the behavior of the concrete column which is strengthened with the CFS is not clearly defined yet. This study presents the result of experimental studies on the stress-strain behavior and the strengthening effect of laterally confined concrete by Carbon Fiber Sheets(CFS) subject to compression. In this experimental study, included three-parameters, which are the number of the sheets, the laminated angle of sheets, and concrete strength.

  • PDF

3-Axis Milling Algorithm Development for Carbon Fiber Reinforced Polymer (CFRP) Composites (탄소섬유복합재 3축 밀링 알고리즘 개발)

  • Luo, Shan;Bayesteh, Reza;Dong, Zuomin;Jun, Martin B.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • The simulation of Carbon fiber reinforced polymer (CFRP) machining facilitates the selection of optimal cutting parameter for high machining efficiency and better surface quality. In this study, This paper proposes a dual-dexel model to represent the fiber laminate with computational geometry method to calculate the fiber length removed per revolution and fiber cutting angles. A flat end milling simulation software is developed in C# to simulate and display the CFRP milling process. During simulation, fiber lengths, fiber cutting angle and engaged cutting angle can be displayed in real-time. A CFRP plate with different angles in different layer is used to compare the simulation results.

Influences of Fiber Laminate Orientation on the Behavior of Fatigue Delamination in GLARE (GLARE 의 섬유층 배향이 피로층간분리 거동에 미치는 영향)

  • 황진우;송삼홍;김철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.479-482
    • /
    • 2004
  • The behavior of fatigue delamination in a GLARE(Glass Fiber Reinforced Metal Laminates) under fatigue loading conditions investigated. The behavior of fatigue delamination was examined basing on investigation of the crack and delamination using a SAM (Scanning Acoustic Microscope). The crack and delamination behavior on the relationship among a-N, SAM images and crack length-delamination length were considered. The test results indicated the features of different fatigue delamination and crack growth according to each fiber orientation angle and also obtained to more increase delamination than crack through the relationship between crack length and delamination length in GLARE.

  • PDF

Minimum Weight Design Method for Infantry Fighting Vehicles Hull using Thick Composite Laminate (전투용 차량의 경량화 최적설계 기법 연구)

  • 김건인;조맹효;구만회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2001
  • In this paper, general design process for Tracked Fighting Vehicle has been suggested. Stress analysis and optimal design for ply angle of IFV's composite upper hull has been calculated using KMA CIFV and it is contained exploratory development of design process. In this point, this paper applied composite to IFV's upper hull. Finite element mesh has been made using Matlab program, and we have analyzed stress based on the given material properties and ply arrangement. For each load condition, load distribution in plane and failure index are calculated by using Tasi-Hill criterion, which is composite failure criterion and analyzing change of failure index as change of ply angle. Finally, optimal ply angles of upper hull are calculated using KMA CIFV. We can estimate the decrease of weight for IFV's upper hull.

  • PDF

A Study on the Surface Degradation Properties of Epoxy / Glass fiber Treated with Ultraviolet Rays (자외선 처리된 Epoxy/Glass Fiber의 표면 열화 특성에 관한 연구)

  • Lee, Baek-Su;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.86-91
    • /
    • 1999
  • In order to analyse the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to the wavelength of ultraviolet rays and evaluated by comparing contact angle, surface resistivity, surface potential decay, and ESCA spectrum respectively. As irradiation energy are increased, the surface properties were steeply decreased in the range of 300[nm]. But the measured values within the scope of400[nm]∼440[nm] showed a increase as compared with the untreated ones. Also, fromthe result of ESCA spectrum, it was confirmed plenty of oxygen groups on the spot showing the maximum decrease of surface properties and the existence of ether groups on the surface of coloring phase. We can conclude that the degradation phenomena on the surface of epoxy composites are dominated by the induction of ester and carboxyl groups.

  • PDF

Surface Properties of Epoxy Composites by Plasma Treatment (플라즈마처리에 따른 에폭시 복합재료의 표면특성)

  • 임경범;이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.821-827
    • /
    • 2001
  • In this study performed to identify a degradation mechanism in macromolecular insulating material, the contact angel, surface potential decay, surface resistivity, and XPS analysis were compared after exposure of FRP laminate to plasma discharge. In the case of contact angle, the surface of specimen untreated showed weak hydrophobic property of 73。. However, the contact angle was decreased to 20。in the plasma-treated specimen. In the case of chemical changes arising form plasma treatment, carboxl radicals were generated mainly in the surface treated, which was rapidly changed to the hydrophilic one. In the corona potential decay study to determine the electrical changes of the surface, positive charges were rapidly decreased when compared with negative charges, leading to negative property in the surface of specimen not treated. However, in the case of the hydrophilic surface, lots of carboxl radicals acting as positive polarity were generated, resulting in positive surface. Owing to such positive surface, charges of negative polarity applied were rapidly decreased.

  • PDF

Pattern Design and Structural Test for the Involute Construction (인볼루트 구조물의 적층패턴설계 및 구조시험)

  • 이형식;원용구;이승구;주창환
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.57-62
    • /
    • 1999
  • In order to fabricate a involute construction structure, the pattern design for prepreg stacking was developed. For obtaining the demanded strength in the circumferencial and axial direction of the involute construction and tile proper processablity of prepreg stacking, the shaped pattern method was established which has a calculated length suitable for stacking. We can obtain the involute construction with clean interface between laminated plies and suitable dimension by using pattern design method developed in this study. Test specimens with varied arc angle were designed to test the structural properties of involute construction. Tensile and compressive strength decreased with the increase of arc angle. Tensile modulus and compressive failure strain were calculated under the conditon of transformation of material properties successfully.

  • PDF

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

Thermal Buckling of Thick Laminated Composite Plates under Uniform Temperature Distribution (균일분포 온도하의 두꺼운 복합 재료 적층판의 열적 좌굴 해석)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1686-1699
    • /
    • 1993
  • In this paper, the thermal buckling of thick composite angle-ply laminates subject to uniform temperature distribution is studied. For the plates of 4-edges simply supported condition and those of 4-edges clamped condition, the critical buckling temperatue is derived, using tile finite element method based on the shear deformation theory. The effects of lamination angle, layer number, laminate thickness, plate aspect ratio and boundary constraints upon the critical buckling temperature are presented.

Response of fiber reinforced plastic chimneys to wind loads

  • Awad, A.S.;El Damatty, A.A.;Vickery, B.J.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.83-96
    • /
    • 2000
  • Due to their high corrosion and chemical resistance, fiber reinforced plastics (FRP) are becoming widely used as the main structural material for industrial chimneys. However, no national code currently exists for the design of such type of chimneys. The purpose of this study is to investigate analytically the response of FRP chimneys to wind loads. The classical lamination theory is used to substitute the angle-ply laminate of a FRP chimney with an equivalent orthotropic material that provides the same stiffness. Dynamic wind loads are applied to the equivalent chimney to evaluate its response to both along and across wind loads. A parametric study is then conducted to identify the material and geometric parameters affecting the response of FRP chimneys to wind loads. Unlike the across-wind response, the along-wind tip deflection is found to be highly dependent on the angle of orientation of the fibers. In general, the analysis shows that FRP chimneys are very vulnerable to across-wind oscillations resulting from the vortex shedding phenomenon.