• Title/Summary/Keyword: Laminate Angle

Search Result 117, Processing Time 0.023 seconds

Solution to Elasticity Problems of Structural Elements of Composite Materials (복합재료 구조 요소의 탄성문제에 대한 해)

  • Afsar, A.M.;Huq, N.M.L.;Mirza, F.A.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.19-30
    • /
    • 2010
  • The present study describes a method for analytical solution to elastic field in structural elements of general symmetric laminated composite materials. The two dimensional plane stress elasticity problems under mixed boundary conditions are reduced to the solution of a single fourth order partial differential equation, expressed in terms of a single unknown function, called displacement potential function. In addition, all the components of stress and displacement are expressed in terms of the same displacement potential function, which makes the method suitable for any boundary conditions. The method is applied to obtain analytical solutions to two particular problems of structural elements consisting of an angle-ply laminate and a cross-ply laminate, respectively. Some numerical results are presented for both the problems with reference to the glass/epoxy composite. The results are highly accurate and reliable as all the boundary conditions including those in the critical regions of supports and loads are satisfied exactly. This verifies the method as a simple and reliable one as well as capable to obtain exact analytical solution to elastic field in structural elements of composite materials under mixed and any other boundary conditions.

Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions (강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계)

  • Lim, Juhee;Doh, Jaehyeok;Yoo, SangHyuk;Kang, Ohsung;Kang, Keonwook;Lee, Jongsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.

Nonlocal elasticity theory for bending and free vibration analysis of nano plates (비국소 탄성 이론을 이용한 나노 판의 휨 및 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3207-3215
    • /
    • 2012
  • In this paper, we study the bending and free vibration analysis of nano plate, using a nonlocal elasticity theory of Eringen with a third-order shear deformation theory. This theory has ability to capture the both small scale effects and quadratic variation of shear strain and consequently shear stress through the plate thickness. Analytical solutions of bending and vibration of a laminated composite nano plate are presented using this theory to illustrate the effect of nonlocal theory on deflection of the nano plates. The relations between nonlocal third-order and local theories are discussed by numerical results. Further, effects of (i) nonlocal parameters, (ii) laminate schemes, (iii) directions of the fiber angle and (iv) number of layers on nondimensional deflections are investigated. In order to validate the present solutions, the reference solutions are used and discussed. The results of anisotropic nano plates using the nonlocal theory may be the benchmark test for the bending analysis.

Convergence Study on Fracture at Joint Using Adhesive at Inhomogeneous Materials Bonded with CFRP (CFRP와 결합된 이종재료들에서의 접착제를 이용한 접합부의 파손에 관한 융합 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.151-156
    • /
    • 2018
  • In this study, CFRP and metal or nonmetal were bonded with adhesive and the fracture study on this material was carried out. CFRP at the upper side of specimen and metal or nonmetal were assigned at the lower side of specimen by using DCB specimen as the analysis condition. And it was desribed that the structural adhesive were bonded between both upper and lower sides. As this analysis result, the least equivalent stress was shown at the specimen bonded with aluminium. The maximum shear stress was shown to become lowest at the de-bonded CFRP specimen when titanium was used. In conclusion, it was shown that the deformation of specimen became lowest when titanium was used. On the basis of this study result, the esthetic sense can be shown as the fracture data of bonded interface using adhesive are grafted onto the real life.

Improvement of Depth Profiling Analysis in $Hf_xO_y/Al_xO_y/Hf_xO_y$ structure with Sub 10 nm by Using Low Energy SIMS

  • Lee, Jong-Pil;Park, Sang-Won;Choe, Geun-Yeong;Park, Yun-Baek;Kim, Ho-Jeong;Kim, Chang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.162-162
    • /
    • 2012
  • Sub 100 nm의 Complementary Metal-Oxide-Semiconductor (CMOS) 소자를 구동하기 위해서는 2.0 nm 이하의 $SiO_2$ oxide에 해당하는 전기적 특성이 요구된다. 그러나 2.0 nm 이하의 $SiO_2$에서는 누설 전류가 너무 크기 때문에 이를 대체하기 위해서 유전 상수 (dielectric permittivity)가 높은 $HfO_2$ (${\varepsilon}=25$), $Al_2O_3$, $HfO_2/Al_2O_3$ laminate 등의 high-k dielectric 물질들이 연구되고 있다[1]. High-k dielectric 물질의 전기적 특성은 박막 조성, 두께 및 전극과의 계면에 생성되는 계면 층이나 불순물(Impurity) 거동에 크게 의존하므로 High-k dielectric/전극(Metal or Si) 구조에서 조성 및 불순물의 거동에 대한 정확한 평가가 주요 쟁점으로 부각되고 있다. 이를 평가하기 위해 일반적으로 $Ar^+$ ion에 의한 depth profiling 분석이 진행되나 Oxygen 원자의 선택적 식각에 기인된 분석 깊이 분해능(Depth Resolution) 왜곡으로 계면 층의 형성이나 불순물의 거동을 정확하게 평가할 수 없다. 이러한 예로는 $Ta_2O_5$$SrBi_2Ta_2O_9$와 같은 다 성분 계 산화막에 $Ar^+$ ion 주사 시 발생하는 선택적인 식각(Preferential Sputtering) 때문에 박막의 실제 조성 및 거동을 평가하는 것은 어렵다고 보고된 바 있다[2,3]. 본 연구에서는 $90{\AA}$인 적층 $Hf_xO_y/Al_xO_y/Hf_xO_y$ 구조에서의 불순물 거동 분석 능력 확보 상 주요 인자인 깊이 분해능 개선을 Secondary Ion Mass Spectroscopy(SIMS)의 primary ion 종, impact energy 및 주사 각도를 변화시켜 ~1 nm 수준까지 구현하였다. 이러한 분석 깊이 분해능의 개선은 Low Impact Energy, 입사 이온의 glancing angle 및 Cluster ion 적용에 의존하며 이들 요인의 효과에 대해 비교/고찰하고자 한다.

  • PDF

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.