• Title/Summary/Keyword: Laminar Separation

Search Result 93, Processing Time 0.021 seconds

Numerical Computation of Laminar Flow over a Backward Facing Step (Beckward Facing Step의 층류 유동 수치계산)

  • Van, Suck-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.150-161
    • /
    • 1993
  • 원초변수를 이용한 Navier-Stokes 방정식의 수치계산기법을 개발하고, 이를 응용하여 backward facing step의 층류 유동을 계산하였다. 직교좌표계에서의 비압축성 Navier-Stokes방정식을 풀기위해 시간과 공간항을 2차 정도의 유한 차분을 사용하여 이산화하였고 비교차격자계를 사용하여 양해법으로 수치 계산하였다. 운동량방정식과 연속방정식으로 부터 유도된 압력방정식(pressure-poisson equation)을 이용하여 무발산 조건을 만족시켰ㄲ다. Backward facing step의 층류 유동을 100.$\leq$R$_e$$\leq$1000 범위에 대해서 수치 계산하였으며 실험결과와 잘 일치하는 결과를 구할 수 있었다. 특히 step뒤에서 생기는 박리구간의 길이는 다른 계산결과들보다 실험치에 가까운 값을 얻을 수 있었으며, Re가 600보다 클때는 위쪽 벽에 또 다른 박리 유동이 발생되는 현상이 예측되었다.

  • PDF

Active Flow Control Using the Synthetic Jet Actuator (Synthetic Jet Actuator를 이용한 능동 유동 제어)

  • Noh Jongmin;Kim Chongam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

FLOW-INDUCED FORCES ON AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • Numerical investigation has been carried out for laminar flow past an inclined square cylinder in cross freestream. In particular, inclination of a square cylinder with respect to the main flow direction can cause sudden shift of the separation points to other edges, resulting in drastic change of flow-induced forces on the cylinder such as Strouhal number (St) of vortex shedding, drag and lift forces on the cylinder, depending upon the inclination angle. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number on an Re-Angle plane. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards.

Numerical Study for Effects of Density-Stratification on Wake Behind a Sphere (구 후류에 미치는 유동장 밀도 성층화 영향 전산 해석)

  • Lee, Sung-Su;Yang, Kyung-Soo;Park, Chan-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.553-559
    • /
    • 2004
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered, and linear stratification of density is assumed under Bossiness approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

Rotating Flows in Eccentric Cylinders (편심환내의 회전 유동)

  • Sim, Woo-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF

A Numerical Study of Formation of Unsteady Vortex behind a Sphere in Stratified Flow (층상류 속에 있는 구 후류의 비정상 와류 형성에 관한 수치 해석)

  • Lee, Seung-Su;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.715-720
    • /
    • 2000
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered and linear stratification of density is assumed under Boussinesq approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

  • PDF

A Study on the Structure of Premixed Turbulent Propagating Flames Using a Microprobe Method (정전탐침법에 의한 예혼합 난류전파화염의 구조에 관한 연구)

  • Kim, J.H.;Ahn, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.78-86
    • /
    • 1995
  • The structure of premixed turbulent flames in a constant-volume vessel was investigated using a microprobe method. The flame potential signal having one to eight peaks was detected in the case of turbulent flames, each of them being regarded as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. The experimental resuits of this work suggest the existence of "reactant islands" behind the flame front when the turbulence was intensified to some extent. The critical(lowest) ratio of turbulence intensity to the laminar burning velocity being found to be about 0.7 for the formation of reactant islands in this experiment.

  • PDF

Flow Characteristics Around the Oscillating Sphere at High Strouhal Number Using Three-Dimensional Vortex Element Method (3차원 입자와법을 이용한 높은 스트롤수로 진동하는 구에 대한 유동장의 수치해석)

  • Lee, Sang-Hwan;Park, Yun-Sub;Cho, Young-Taek;Ahn, Cheol-O;Seo, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.421-428
    • /
    • 2008
  • In this paper, we investigated the flow of an incompressible viscous fluid past a sphere which is oscillated one-dimensionally over flow regimes including laminar flow at Reynolds number of 100, 200 and Strouhal number of up to 5000. In order to analyze flow and estimate critical Strouhal number, we introduce three-dimensional vortex element method. With this method, separation only appears in decreasing velocity region during the high Strouhal numbers. We find out that vorticity distribution around sphere is proportionl to the Strouhal number. And we can decide that low Strouhal number is below 100, high Strouhal number is above 500 from many results. Thus the critical Strouhal number(St) effected to the flow field is expected to be 100

A Study on Heat Transfer Enhancement from Flat Plate Using Multiple Tripping Wires (복수 트리핑 와이어를 사용한 평판에서의 열전달 촉진에 관한 연구)

  • Yoo, Seong-Yeon;Cho, Woong-Sun;Ahn, Jong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.837-845
    • /
    • 2012
  • The purpose of this research is to investigate the heat transfer enhancement by the multiple tripping wires installed on a flat plate. Naphthalene sublimation technique is used to measure the local mass transfer coefficients, and then heat transfer coefficients are calculated using heat/mass transfer analogy. Experiments are performed for the developed and developing flow conditions. Local and average heat transfer coefficients from the flat plate with three tripping wires are compared with those of no and one tripping wire. Remarkable heat transfer enhancements are found resulting from the boundary layer separation by the tripping wires, especially in the laminar boundary layer.

Buoyancy-Affected Separated Laminar Flow over a Vertically Located, Two-Dimensional Backward-Facing Step (수직으로 놓인 후향계단위를 흐르는 유체유동에 미치는 부력의 영향에 관한 연구)

  • 백병준;박복춘;김진택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1253-1261
    • /
    • 1993
  • Numerical analysis and measurements of the velocity and temperature distributions in buoyancy assisting laminar mixed convection flow over a vertically located, two-dimensional backward-facing step are reported. Laser-Doppler Velocimeter and Constant Temperature Anemometer operated in constant current were used to measure simultaneously the velocity and temperature distributions in the recirculation region downstream of the step. The reattachment length was measured by using flow visualization technique for different inlet velocities, wall temperatures and step heights. While the reattachment length $X_r$ increases as the inlet velocity or step height increase, it decreases as the buoyancy force increases, causing the size of the recirculation region to decrease. For the experimental range of $Gr_s$/$Re_{s}^{2}$$\times$$10^3$<17, a correlation equation for the reattachment length can be given by $X_{r}=1.05(2.13+0.021 Re_{s})exp$ $(-33.7_s^{-0.186}/Gr_{s}/Re_{s}^2).$ The Nusselt number is found to increase and the location of its maximum value moves closer to the step as the buoyancy force increases. The location of the maximum Nusselt number occurs downstream of the reattachment point, and distance between the reattachment point and the location of the maximum Nusselt mumber increases as the buoyancy force increases. Computational prediction agrees favorably well with measured results.