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1. Introduction

Laminar incompressible fluid flow over a back-
ward-facing step is one of the simplest but very
important separated flows which is frequently
used as the model problem to test new computa-
tional fluid dynamics methods for the calculation

of viscous flows. In addition, the importance of

i i
Fboieta A el o3 o)

such a flow can be found in the application to
engineering equipments of which sudden expan-
sions of section geometries cause the flow sepa-
rations. A number of experimental and numerical
studies have been made for this probiem to inve-
stigate the phenomena of flow separation inclu-
ding the variation of flow structure with Reynolds
number, the section geometry or the step height

and the momentum thickness of the oncoming
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Numerical Computation of Laminar Flow over a Backward Facing Step 329

flow to the step. The computational and experi-
mental study of Macagno and Hung[1], the expe-
rimental and numerical investigation of Mueller
and O'Leary[2], the experiments of Goldstein et
al.[3], the experimental study of Durst et al.[4],
the experiments of Sinha et al.[5], the computa-
tional analysis of Kumar and Yajnik[6] and the
experimental and computational investigation of
Armaly et al.[7] could be most directly related
and widely known works in the literature. See
Armaly et al.L7] and Eaton and Johnston[8] for
more complete review and list of references on
both laminar and turbulent flows.

The purpose of the present work is to carry out
a numerical investigation into separating laminar
flows over a backward-facing step using an expli-
cit finite difference numerical method for the so-
lution of the two-dimensional incompressible Na-
vier-Stokes equations.

The method used in the present study is based
on the primitive variable formulation and employs
the nonstaggered grid system, second order finite
differences for the spatial discretization and ei-
ther the Euler explicit or hybrid four stage time-
stepping scheme for the time discretization.

In the following, a description of the theoretical
for mulation and the computational method inclu-
ding an overall solution procedure is given.

Then, the results of numerical computations of
laminar flow over the two-dimensional backward-
facing step are presented, for which the LDA
measurements of Armaly et al.[7] are available.
Subsequently, comparisons are made with the ex-
perimental results to aid in evaluating the present
numerical method. Finally, some concluding re-

marks are made.
2. Theoretical formulation

For incompressible, Newtonian fluid flows, the
governing equations are the incompressible Na-

vier-Stokes equations which describe the conser-
vation of mass and momentum.

The incompressible Navier-Stokes equations in
terms of the primitive variables, ie., velocity ¥
(x, t) and pressure p{x, t), can be written as fo-

llows.
\v/ E___.0 ........................................ (1)
Ju 1
—— 4+ ¥ = — T2y e
51 + (uwy) Vp+ REV u (2)

(1) and (2) are the governing equations, which
must be satisfied at every point in the given flow
domain Q for the time #€0. It is assumed that
there is no body force. Providing proper initial
and boundary conditions given, the flow problem
is completely defined. In the following theoretical
analysis, the Dirichlet boundary condition is assu-
med for all the boundaries, but the same analysis
can be applied for the problem with either the
Neumann or Robin boundary conditions.

The Dirichlet boundary condition for the velo-
city on the boundary of the flow domain is given

as

where W<(x, ) can be any vector function
defined on the boundary g, which must satisfy

the following constraint.

The initial condition, which should be specified
for the whole flow region including the boundary,

can be represented as follows.

I

(z,0) = uy(z), z€O(=0080) (4a)

The initial velocity field u, is required to sati-
sfy the following conditions.

Vou, =0 20N ccovrremrnrinnnnnn. (4b)
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Egs. (1)—(4) are, in principle, sufficient
enough to obtain a unique velocity ¥ and pres-
sure p field, for the latter up to an additive cons-
tant. Note that the boundary and initial conditions
are not needed for the pressure and the velocity
¥ €C° and the pressure p € C' are required.
Also, the continuity equation does not include the
pressure, while its gradient appears in the mome-
ntum equation. Therefore, the pressure should be
determined in a way that the velocity field be al-
ways and everywhere divergence-free and simul-
taneously satisfy the momentum equations for £)0.

Although it is possible to obtain the numerical
solution of these coupled equations through direct
discretization[9, 10], most of the primitive varia-
ble methods employ the pressure-Poisson equa-
tion which is derived from the continuity equation
and the same approach is adopted in the present
method. The derivation of a pressure-Poisson
equation is given in the following.

From Egs. (1) and (4b), the velocity field must
be always divergence-free for ¢20, and so the co-
rresponding field of acceleration should be

Substituting the acceleration from equation (2)
into equation (5) and rearranging it, we obtain

the following pressure-Poisson equation.

Provided that the momentum equation (2) is
satisfied everywhere inside the flow domain,
equation (6) is equivalent to equation (5) and,
with the initial condition for the velocity field (4
b), it actually guarantees the solenoidal velocity
field, i.e., satisfaction of equation (1). It should be

pointed out here that the pressure-Poisson equa-
tion (6) is a second order elliptic partial differen-
tial equation and requires the proper boundary
condition to be specified everywhere on the bou-
ndary of the solution domain for the well-posed
problem. It is also noted that the velocity ¥ € C*
and the pressure p € C* are required, which are
much severe constraints for the smoothness im-
posed on the velocity and pressure fields compa-
red with those required in the original system of
Egs. (1) —(4). The effects of these constraints on
the numerical solutions are beyond the realm of
the present analysis. Now, the proper boundary
condition for calculating the pressure using the
pressure-Poisson equation (6) is considered.

A simple and obvious way to derive boundary
conditions for pressure is to apply equation (2)
on the boundary itself. Since equation (2) is a
vector equation and a scalar boundary condition
is needed for pressure, either the normal or ta-
ngential projection of (2) onto the boundary
could be applied ; the former yields the Neumann
boundary condition and the latter the Dirichlet
boundary condition, respectively. However, only
the Neumann boundary condition is applicable at
t=0 as well as for £>0 in general cases, while the
Dirichlet boundary condition only applies for >0
[10]. On the other hand, Strikwerda[9] argued
that the Neumann boundary condition is not sati-
sfactory, since it is not independent from the ori-
ginal system as it is derived from the momentum
equation, which leaves the system underdetermi-
ned. This Strikwerda’s claim has been refuted by
Gresho & Sani{10] and Roache[11] on the basis
that the momentum equations are employed only
inside the flow domain, but not on the boundary
for which the Dirichlet boundary condition has
already been imposed. Thus the Neumann boun-
dary condition is not only available but also pro-
per as the boundary condition for the pressure-
Poisson equation. Gresho & Sanil10] further pro-
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ved that the Dirichlet condition can also generally
be applied only for £>0. In the present study, the
Neumann boundary condition is employed for the
pressure-Poisson equation.

The Neumann boundary condition for pressure

can be written as

dp du,, 1,
P Ty Vu, + —V?u,,
an ot u Uy, + Re u
z € 99, £ 0 reerereneennn (n

Here, u, is the normal component of the velo-
city on the boundary.

The pressure-Poisson equation (6) together
with the boundary condition (7) forms an elliptic
boundary value problem, in which the compatibi-
lity condition should be satisfied for the existence
of a unique pressure up to a constant. Integrating
equation (6) over the solution domain  and ap-
plying Green’s theorem to transform the volume
integral to a surface integral, the compatibility co-
ndition can be obtained as follows.

/VzpdV:~f V(v Vu-— —1~Vzg)dV
0 a R.

dp / 1 _,
—dS =~ u-Vu, — —V u,,)dS
/an dn an( R,

Op 1
(== 4+ u-Vu, — —V3u,)dS =0 (8a)
-/:'m on R )

€

Using the Neumann boundary condition (7),
the above compatibility condition can be rewritten
in the following form.

dp 1
£ty Vu, - —V2y,)dS =
/m(an UV, — o u,)dS

—/ Pun 45 =0 (8b)

Using the Dirichlet boundary condition (3),

equation (8b) can be rewritten again as

du,, a3 d
~——d$=/ Lw. d5:~/ WondS =
/:m at an at(—ﬂ) dt an-ﬂ o

From these, it is shown that as long as the Di-
richlet boundary condition for the velocity (3) is
properly imposed, the elliptic problem for the
pressure, Egs. (6) and (7), satisfies the compati-
bility condition (8), which guarantees a unique,
up to a constant, pressure field.

If we impose equation (5) on the boundary as
shown in Fig. 1. and apply the divergence theo-
rem, the following relation can be obtained.

an

Fig. 1. Fluid Domain and Control volume

du 1 du
vV —= — 1 — - =
( a‘)em AI‘I’T‘” (AV as 9t ﬂds) 0

Substituting the momentum equation (2) into
the integrand gu/ot of the second integral, equa-
tion (9) can be rewritten as follows.

<v 65) i ! {/ ou . 4s
Bt = hm {-—— —
at su  OV—ulAV ASe aJt s
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L (e ) o]

As the control volume AV—0, AS,—~>ASz and

np—>—ns, the above equation reduces to

(V . 3_2) -
at a1

1 du 1
im {-L 9.y, Up- L2
AIJ’EO{AV /As., (af*v (wu)+Vp - o E)

Since ASs can be taken arbitrary, the integrand

must vanish identically, i.e.,

Equation (10b) is the normal component of the
momentum equation on the boundary, which is
the necessary condition for the satisfaction of the
continuity equation, and is identical with equation
(7). From this analysis, it is clearly seen that the
Neumann boundary condition for the pressure is
the necessary condition for the divergence-free
velocity on the boundary. Thus, in summary, the
momentum equation (2) with the Dirichlet boun-
dary condition (3) and the initial condition (4),
and the pressure-Poissonequation (6) with the
Neumann boundary condition (7), can provide
the divergence-free velocity and the correspon-
ding pressure fields over the whole solution do-
main.

As to know that the potential theory provide
useful solutions for many practical flow problems,
it is not hard to see the important role of the co-
ntinuity equation in the incompressible fluid dy-
namics. This importance of the divergence-free
condition for the velocity field never deteriorate

for numerical solution methods in computational

fluid dynamics(CFD). In order to get good nume-
rical solution using CFD method, it is very impo-
rtant to satisfy the discretized continuity equation
as accurately as possible. In the following, the di-
scretization of the governing equations is presen-
ted.

3. Discretization of the equations

By the virtue of its geometrical simplicity, the
Cartesian coordinate is used in the present back-
ward-facing step flow. Instead of the staggered
grid system used in most of the primitive variable
methods, the nonstaggered grid system is adopted
in the present method. The staggered grid system
is generally employed to obtain stable numerical
solutions, since the discrete continuity equation
can be accurately satisfied at the grid points
where the pressure is computed and also the co-
mpatibility condition is automatically satisfied as
well which guarantees a unique pressure field up
to an additive constant. However, there is no
node in the staggered grid where all the discreti-
zed governing equations are simultaneously satis-
fied. Also, in general, the interpolation of veloci-
ties is required, the requirement of computer sto-
rage is increased and the application of boundary
conditions is not natural due to the staggered
grid arrangement. These disadvantages of the
staggered grid disappear when the nonstaggered
grid system is employed. However, in the nonsta-
ggered grid, it is very difficult to satisfy the disc-
rete continuity as well as the compatibility condi-
tion. Moreover, the calculated pressure field can
be oscillatory due to decoupling of pressure on
even-odd nodes and this, so called, checkerboard
pressure field causes the instability of the nume-
rical solutions. In the present calculation, the me-
thod of Sotiropolos and Abdallah[12] for the dis-
cretization of the pressure-Poisson equation is in-
troduced to suppress the pressure oscillations and

—154—



Numerical Computation of Laminar Flow over a Backward Facing Step 333

to minimize the errors on the satisfaction of the
discretized continuity in the nonstaggered grid
system.

The momentum equation (2) is discretized by
the use of three-point central finite differencing
for the pressure gradient and the viscous terms.

To see the effect of the differencing method for
the convective acceleration term on the numerical
results, classic second order upwind differencing,
Leonard’s QUICK[13], Strikwerda’s regularized
finite difference[9] with upwinding scheme are
tested.

For numerical integration in time, either Euler
explicit scheme or a hybrid four-stage time-step-
ping scheme[14] is employed.

In Euler explicit scheme or four-stage time-
stepping scheme, the momentum equation (2)
can be discretized as follows,

gn =ul e = DX RE e (11a)
Wil =uli - x At x R e (116)
Rijk = 6zpijkt 6z (% ki)
1~ - -
- 72—(511 + 5yy + 622)2."_7‘* (116‘)
€

where the superscript n and n+1 represent
the time step, / and /—1 represent subsequent
stages in the four-stage time-stepping scheme in
which /=0 corresponds to the »n time step and
{=4 the n+1 time step, aF%, agz%, (13:-%“,
as=1, and Af the time increment. The finite dif-
ference operators, §,, B S,,, &, are defined as
follows.

Sz bi.sk

(362 + 36, + k6,)0; .k

id’i-fl..}}k - ¢‘—LJJ¢ + j¢l.1+1.k - ¢t.]’—1,k
20z 20y
+l~c¢i,j.k+1 ~ i jk-1
240z

Bontiin = bivigk = 205k + bic1 sk
zzPi 5k - (AI)2

5 ¢“. -2 5.5,k T Py
byybijk = s (z;)'; Pij—1k
5 Pk — 2005k T b k-
zz(p\.J,k = (Az)2

When the convection term is discretized using
classic second order upwind differencing or Leo-
nard’s QUICK[13] or Strikwerda's regularized fi-
nite difference[9] with upwinding scheme, 8, *
(#.;+ #:;0) in equation (11) is replaced by the

following expressions respectively.

55‘(H.',J',k Y k) = (55g+355+fc5£/)(2.‘,j,k Y k)

1

6Y¢i i =

= bk 2Az

{ (356 — 4ok + bicayik), Ty, 20
(_3¢i,1.k +4div1,5k — ¢z‘+2,j,k): 0 ¥ < 0

X

u —
5y ¢i,j,k = EA_y X
{ (3451',]',k - 4¢L]’—l.k + ¢|.j—2,k): 5 "YU 5k >0
(—3i sk +4¢s 11k — Bijrak)s I U <0
1

67 $ijk = ——
e Pk 20z %

{ (3¢i sk — 4bi k-1 + bisk-2), k Uy 5k 20

(=3¢ 5k + 4B jkt1 — bighsz), K-y, <O
53'(#4,1,/: Y g) = (5‘53*‘35}?‘*@5?)(2:‘.1,k y—i,j.k)

Git1,5k ~ ic 1k q
§Q ik = J AL
z Piyk 2Az 3Az
{ (fiv1 — 3¢ +3¢im1 —dig), - u
(fiv2 — 3dip1 + 36, — $iz1), i

53 i gk = Pistik —bigoik 4
2Ay 3Ay

{ (¢J'+1 —3¢; + 3¢5-1 — ¢J’-2): 3 T8k 20
(6542 = 36501+ 385~ ¢5-1), 7,k < O

59,k = ikl — Bijh-1 B ‘
2Az 3Az

(fh+1 — 3k + 3¢x_) — Pi—2),
(Br+2 — 3dktr + 3¢k — dr_1),

Y20
Y gk < 0
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where ¢=0.375 for QUICK and ¢=0.5 for Stri-
kwerda's regularized finite difference.

In the present method, the residual averaging
scheme[14] is also adopted to increase the time
step for obtaining a steady-state solution as rapi-
dly as possible. In this scheme, the residuals R; ;.
in the right hand side of the equation (11) are
replaced by weighted averages of the neighboring
residuals(R ;).

(1 —'71:61:1)(1_'71/6!/!/)(1_'72522)1_?1}1'* = RI:,]',IC

where v,, v,, v. are the smoothing parameters
in the x, y, z directions.
Discretize the pressure Poisson equation (6)

using the central difference formula, we get

€

The finite difference operators, A and 81, are
defined as follows.

Ei‘ﬁi,j.k = (551 + jgy + Egz)‘#ﬂjk =

Pivdak T otk 4 bisete — itk
1
Az J Ay
- b ket d T ¢i, k— 3
R e (14h)

The discretized momentum equation (11) gives
the velocities on the grid points, but to solve the
discretized pressure-Poisson equation (13), we
should know the velocities on the middle of grid
points.

The velocities on the middle of grid points can
generally be obtained by averaging the velocities

on the grid points. Due to the inconsistency bet-

- Hyoung-Tae Kim

ween the discretized momentum equation and di-
scretized pressure-Poisson equation, it is impossi-
ble to satisfy the discretized continuity equation
exactly.

Sotiropoulos & Abdallah[12] show that the er-
ror in the discretized continuity equation is dire-
ctly proportional to the square of the grid spa-
cing ; the 4th derivatives of the pressure ; multi-
ples of the 2nd derivatives or the 4th derivatives
of the velocity through the analysis of the Euler
equation. Also the compatibility condition (8) can
not be satisfied automatically because of the same
inconsistency. Briley’s source correction method
[15] and Abdallah’s consistent finite differencing
method[16] can be applied for the remedy of this
problem and the latter method is tested in the
present study.

In the Abdallah’s consistent finite differencing
method, the compatibility condition can be satis-
fied by imposing the Neumann boundary condi-
tion (7), which is the normal component of the
discretized momentum equation, on the half grid
points from the boundaries. To get the successful
results with this method, it is important to disc-
retize the pressure-Poisson equation in conserva-
tive form.

Another form of the discretized pressure-Pois-
son equation can be obtained as follows by subs-
tituting the equation (11) into the discretized
continuity equation.

The above equation can be rewritten for pres-
sure as follows.

n n 0 E1nk
Api.]"k = -5£.ii,j.k + = At‘]' (16)

If the discretized continuity equation can be
satisfied at time-step n, the last term vanishes.
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The operator A is defined as follows.

Agiju = (5a=r + byy + 5zz)¢i,j,k """" (17a)
bivegh = 2¢i sk + Pi2jk
benbi sk = W3 I, VT 7h
bi sk i(Az)? (17b)
o $igvek — 2805kt bis-2k (17¢)
5yy4’t,1,k - 4(Ay)2
.7 -2 gk T Pig k—
5zz¢t’,]‘»k = ¢ k42 ¢ S ¢ CiLa (17d)

4(Az)?

The inconsistency between the discretized pre-
ssure-Poisson equation and the discretized conti-
nuity equation can be resolved by using the
equation (16) because the velocities are defined
on the grid points. Since the pressures on the
even and odd grid points are decoupled in (16),
which will cause the checkerboard pressure field,
the regular grid has not been widely used. It is
possible to couple the pressure on the odd and
even grid points through the pressure boundary
condition, but generally it is not enough to re-
move the pressure fluctuation completely. Coup-
ling of the pressure on the neighbouring grid poi-
nts can be ensured by the use of a modified disc-
retized pressure-Poisson equation[4]. The modi-
fied discretized pressure-Poisson equation can be
written as follows if we omit the superscript ».

Apijk—€(A = A)piji =
bz

“U 5k
5 z " %5,
=4 L',J,k +

= ererereeiaa. (18)

where 0 €<1 and the correction term can be
written as follows.

- €
G(A - A)Pi,]‘,k - Z{(Az)26zzzx

+ (Ay)zéyyyy + (A2)25zzzz}p;"j,k (19)
5zxxx¢i.j,k =
$igz — 4bip1 + 60 —ddioy + di2

(bz)*

byyyy Bisk =

Gz — 4541 +6¢; — 41 + dy2
(Az)*

5zzzz¢‘i,j,k =

B2 — 4bisy + 60 —4dk_1 + dr-2
(Bx)

If the € is large enough, the smooth pressure
field can be obtained by coupling of the pressure
at neighbouring grid points. Since the correction
term is proportional to €, square of grid spacing
and 4th order derivatives of pressure, the discre-
tized continuity equation can be satisfied within
the truncation error. In other words, the smooth
pressure field can be obtained with minimized
error on each grid point by selecting the approp-
riate value of &. Equation (18) can not be used
on the very next grid to the boundary because it
requires the pressure values on the points out-
side the domain.

Applying the Dirichlet boundary condition for
the velocity in the derivation of the discretized
pressure-Poisson equation using the equation
(15), the pressure equation, which is applicable
to all the grid points up to the boundary, is obtai-
ned. In the present study, Neumann boundary
condition (7) for pressure is approximated using
the second order forward or backward differenci-
ngto get the solution with the second order accu-

racy.
4. Solution procedure

Numerical solution with discretized equations
(11), (13) or (11), (18) is obtained by the follo-
wing procedures.

(1) Generate the numerical grid in the compu-
tational domain and calculate the necessary
geometric coefficients.

(2) Specify the initial condition for the veloci-
ties and assume the zero pressure field.
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(3) Specify the boundary conditions for the
velocities.

(4) Compute the convection and viscous terms
in the right-hand side of equation (11) ex-
cept the pressure gradient.

(5) When using the equation (13), compute
the convection and viscous terms again in
the form of the right-hand side of the
equation (13). When using the equation
(18), compute the right-hand side of pres-
sure equation using the convection and vi-
scous terms obtained previously in step
(4).

(6) Solve the pressure equation by the point
successive relaxation method to get pres-
sure field on the grid points and use Neu-
mann boundary condition to get the pres-
sure on the boundaries. For the steady
state case, it is not necessary to solve the
pressure equation iteratively until the pre-
ssure is converged completely at each time
step.

(7) Solve the momentum equation (11) to get
the velocities in the new time step using
the convection and viscous terms calcula-
ted in step (4) and the pressure gradient
in step (6). Use the implicit residual ave-
raging (12) for the convection, viscous and
pressure terms to improve the convergence
characteristics.

(8) When using the hybrid four-stage time-
stepping scheme, repeat the steps (4) to
(7) at each stage.

(9) Repeat the steps (4) to (8) until the
steady solution is achieved.

5. Numerical results
The step height is half of the channel height,

for which the experimental data[7] are availa-
ble ; the inlet boundary is located at the step

and the exit boundary at the 15 channel heights
downstream from the step ; 301X51 grid points
are distributed uniformly along and across the
channel, respectively ; the velocity profile of the
fully developed channel flow with maximum velo-
city 1.5 and average velocity 1.0 is given as a in-
let boundary condition ;5 the condition of zero st-
reamwise diffusion is given at the exit boun-
dary ; and the mass conservation is enforced at
each axial station by rescaling the magnitude of
the axial velocity.

R.=100, 200, 389, 600, 800, 1000, based on the
average velocity at the inlet and the channel hei-
ght, are selected for the computation of the flow
over a backward facing step and pressure con-
tours and velocity vectors with streamlines are
presented.

The brief description of the numerical methods
tested is given in Table 1. Although all the me-
thods give almost same results for R, =100 and
200, the results begin to show some differencies
as the R, increases.

Method IV and V are finally selected and only

Table 1. The brief description of the solution
methods

method | discretization & | convection | implicit

solution scheme term residual
averaging
I  |consistent FD[16]| non- no
eq - (13) conservative
II central FD conservative,  yes
eq - (18)
Il |regularized FD[9]| non- yes
upwind, eq - (18) [conservative]
IV |classic upwind FD non- ves
eq - (18) conservativel
\' central FD, conservative| yes

eq. (18), 4-stage
time-stepping[ 14
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the results obtained by both methods are presen-
ted.

The results for R,=100, 389 and 800 are shown
in Figs. 2, 3 and 4, respectively. The reattachment
length and the shape of the primary separation
bubble predicted by Method IV is respectively la-
rger and slenderer than those predicted by Me-
thod V as can be seen in Figs. 3 and 4. The pres-
sure distribution, which is related to the separa-
tion bubbles and streamlines, shows little differe-
nce such that the values predicted by Method IV
are consistently smaller than those by Method V.

{(a) Velocity Vectors w/ Streamlines, Method IV

(b) Pressure Contours, Method IV
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{d) Pressure Contours, Method V
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Fig. 2 Velocity Vectors and Pressure Contours
(R,=100)

The reference pressure is taken at the step cor-
ner and the aforementioned difference in the
pressure distribution may be due to the different
pressure values predicted by two methods at this
point.

The location of the detachment of the additio-
nal recirculating flow on the upper wall predicted
by Method IV is much further downstream than
that predicted by Method V, which can be asso-
ciated with the primary separation bubble and co-
rresponding difference in the pressure gradient.

Much more developed recirculation region is pre-

(a) Velocity Vectors w/ Streamlines, Method IV

(b) Pressure Contours, Method IV

DAY
0.05 0.1

{ I I I
0.35
0.2 0.3 04
050 ] 0 / /
200 I - L A L L L
30 40 50 80

0.0 10 20

(c) Velocity Vectors w/ Streamiines, Method V

(d) Pressure Contours, Method V
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Fig. 3 Velocity Vectors and Pressure Contours
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(a) Velocity Vectors w/ Streamlines, Method IV

(b} Pressure Contours, Method IV
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Fig. 4 Velocity Vectors and Pressure Contours
(R,=800)

dicted by Method V.

In Fig. 5, the reattachment lengths predicted by
Methods IV and V are compared with the experi-
mental[7] and other computational datal[17, 18].
The results show good agreement with the expe-
rimental data of Armaly et al.[7], while the pre-
dicted lengths by Method IV are consistently lar-
ger than those by Method V. It is noted that
other computations underpredict the reattachment
length for R,»600 as compared to the experimen-
tal data.
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Fig. 5 Comparison of the reattachment length of
the primary separation bubble

6. Conclusions

A Navier-Stokes code based on the primitive
variable formulation has been developed to com-
pute the laminar flow over a backward-facing
step.

Numerical calculations are carried out for the
two-dimensional laminar flow over a backward-fa-
cing step and comparisons are made with availa-
ble experimental results. For the selected Reyno-
lds numbers, the computation results obtained by
the present methods show good agreement with
the experimental and other computational data in
general.

However, as the Reynolds number increases,
some differences are found in the shape of sepa-
ration bubbles and pressure distributions. Further
study is necessary to clarify these numerical un-
certainties.
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