• Title/Summary/Keyword: Laminar Burning

Search Result 87, Processing Time 0.028 seconds

A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames (넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구)

  • Jeong, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

Laminar Burning Velocities of Atmospheric Coal Air Mixtures

  • Park, Ho Young;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • The mechanism for laminar dust flame propagation can only be elucidated from a comprehensive mathematical model which incorporates conduction and radiation, as well as the chemical kinetics of particle devolatilization and gas phase and char reaction. The mathematical model for a flat, laminar, premixed coal-air flame is applied to the atmospheric coal-air mixtures studied by Smoot and co-workers, and comparisons are made with their measurements and predictions. Here the principal parameter for comparison is the laminar burning velocity. The studies of Smoot and co-workers are first reviewed and compared with those predicted by the present model. The effects of inlet temperature and devolatilization rate constants on the burning velocities are studied with the present model, and compared with their measurements and predictions. Their measured burning velocities are approximately predicted with the present model at relatively high coal concentrations, with a somewhat increased inlet temperature. From the comparisons, their model might over-estimate particle temperature and rates of devolatilization. This would enable coal-air mixtures to be burned without any form of preheat and would tend to increase their computed values of burning velocity.

Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames (메탄-산소 층류화염전파속도 측정)

  • Oh, Jeong-Seog;Noh, Dong-Soon;Lee, Eun-Gyeong;Hong, Seong-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.258-262
    • /
    • 2011
  • The laminar burning velocity in premixed Oxy-CH4 flames was studied in a lab-scale Bunsen burner. $CH^*$ chemiluminescence method and Schliren photography were used. Experimental results were compared with numerical prediction which was calculated with a CHEMKIN 3.7 package with a PREMIX code. Global equivalence ratio of oxy-CH4 mixture was varied from 0.5 to 2.0 in a laminar flow region. The laminar burning velocity was measured as 3.1 m/s for Schlieren photograph and 2.9 m/s for $CH^*$ chemiluminescence technique (angle method).

  • PDF

A Study on Measurement of Laminar Burning Velocity and Markstein Length of SNG Fuel in Spherical Propagation Flame (구형 전파화염에서 SNG 연료의 층류연소속도와 마크스타인 길이 측정에 관한 연구)

  • SONG, JUNHO;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2019
  • An experimental study was conducted to measure laminar burning velocity and Markstein length of SNG fuel with 3% of hydrogen contents from spherical propagating flames at normal and elevated initial pressure. These results were compared with numerical calculations by Premix code with GRI-mech 3.0, USC II and UC San Diego to provide suitable mechanism for SNG fuel. As a result of this work, it was found that the burning velocities and Markstein lengths of SNG fuel decrease with increase of initial pressure regardless of equivalence ratio. In addition, numerical calculations with GRI-mech 3.0 were coincided with experimental results.

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

Laminar Burning Velocities and Flame Stability Analysis of Hydrocarbon/Hydrogen/Carbon Monoxide-air Premixed Flames (탄화수소/수소/일산화탄소-공기의 예혼합화염에서 층류화염전파속도와 화염안정성)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.23-32
    • /
    • 2011
  • To investigate cell formation in hydrocarbon/hydrogen/carbon monoxide-air premixed flames, the outward propagation and cellular instabilities were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional- thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code. Effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increased for lean and stoichiometric conditions and increased for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly was diminished, whereas cellular instabilities for hydrogen-enriched flames were promoted. However, similar behavior of cellularity was obtained with the addition of methane to the reactant mixtures.

Prediction of Laminar Burning Velocity and Flame Thickness in Methane-Air Pre-Mixture (메탄-공기 예혼합기에서의 층류 화염속도 및 화염두께 예측)

  • Kwon, Soon-Ik;Bowen, Philip J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1201-1208
    • /
    • 2003
  • The thickness of flame and preheat zone from burning velocity which was computed by using Premix code of Chemkin program for methane-air mixture. Also the thickness was evaluated from temperature profile which is also obtained from Premix code for the equivalence ratio of 0.5 to 1.6. The computations were carried out for the laminar flame thickness and burning velocity under the unburned gas temperature 0.5bat-30bar and temperature of 300K-700K at ${\Phi}=l.0$. Comparison of the results showed no difference between these two methods. The flame thickness was decreased by increasing the pressure and temperature, but, the affect of pressure is more significant than the effect of temperature on the flame thickness. The thickness of preheat zone was about 66.5% of the flame thickness, and flame thickness and burning velocity were also predicted by using empirical equation.

Experimental Study on Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

  • Kido, Hiroyuki;Nakashima, Kenshiro;Nakahara, Masaya;Hashimoto, Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to elucidate the turbulent burning velocity of the two-component fuel mixtures, the lean and rich two-component fuel mixtures, where methane, propane and hydrogen were used as fuels, were prepared keeping the laminar burning velocity nearly the same value. Clear difference in the measured turbulent burning velocity at the same turbulence intensity can be seen among the two-component fuel mixtures with different addition rate of fuel, even under nearly the same laminar burning velocity. The burning velocities of lean mixtures change almost monotonously as changing addition rate, those of rich mixtures, however, do not show such a monotony. These phenomena can be explained qualitatively from the local burning velocities, estimated by considering the preferential diffusion effect for each fuel component. In addition, a prediction expression of turbulent burning velocity proposed for the one-component fuel mixtures can be applied to the two-component fuel mixtures by using the estimated local burning velocity of each fuel mixture.

  • PDF

Experimental Study on Role of Syngas Addition on Flame Propagation and Stability in DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Gwon, O-Bung;Yun, Jin-Han;Gil, Sang-In;Kim, Tae-Hyeong;Kim, Yeong-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.207-209
    • /
    • 2012
  • The present experiment was conducted to measure the unstretched laminar burning velocity and cellular instability of DME-air and syngas (in steps of 25 %) added DME-air premixed flames using propagating spherical flame. The experimental results were discussed in two focuses which are effects of syngas fraction and initial pressure on Markstein length, unstretched laminar burning velocities, and cellular instability. The flame instability was evaluated by the Markstein length and cellularity which is caused by diffusional-thermal instability and hydrodynamic instability.

  • PDF

Effects of propane substitution for safety improvement of hydrogen-air flame (수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과)

  • Kwon, Oh-Chae
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.12-22
    • /
    • 2004
  • In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.