DOI QR코드

DOI QR Code

A Study on Measurement of Laminar Burning Velocity and Markstein Length of SNG Fuel in Spherical Propagation Flame

구형 전파화염에서 SNG 연료의 층류연소속도와 마크스타인 길이 측정에 관한 연구

  • SONG, JUNHO (Department of Aerospace Engineering, Sunchon National University) ;
  • LEE, KEEMAN (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • 송준호 (순천대학교 우주항공공학과) ;
  • 이기만 (순천대학교 기계.우주공학부)
  • Received : 2018.12.27
  • Accepted : 2019.02.28
  • Published : 2019.02.28

Abstract

An experimental study was conducted to measure laminar burning velocity and Markstein length of SNG fuel with 3% of hydrogen contents from spherical propagating flames at normal and elevated initial pressure. These results were compared with numerical calculations by Premix code with GRI-mech 3.0, USC II and UC San Diego to provide suitable mechanism for SNG fuel. As a result of this work, it was found that the burning velocities and Markstein lengths of SNG fuel decrease with increase of initial pressure regardless of equivalence ratio. In addition, numerical calculations with GRI-mech 3.0 were coincided with experimental results.

Keywords

SSONB2_2019_v30n1_67_f0001.png 이미지

Fig. 1. Schematic diagram of experimental system

SSONB2_2019_v30n1_67_f0002.png 이미지

Fig. 2. Stretched burning velocities of SNG/air as function of K at 0.1 MPa condition and 298 K: (a) Φ=0.8, (b) Φ=1.0, and (c) Φ=1.2

SSONB2_2019_v30n1_67_f0003.png 이미지

Fig. 3. Effects of different models on extracted laminar burning velocities at 0.1 MPa condition and 298 K: (a) Φ=0.8, (b) Φ =1.0, and (c) Φ=1.2

SSONB2_2019_v30n1_67_f0004.png 이미지

Fig. 4. Comparison of laminar burning velocities between experiments and calculations at 298 K: (a) P =0.1 MPa, (b) P=0.3 MPa, and (c) P =0.5 MPa

SSONB2_2019_v30n1_67_f0005.png 이미지

Fig. 5. Experimental and numerical laminar burning velocities s function of Φ with different pressure condition at 298 K

SSONB2_2019_v30n1_67_f0006.png 이미지

Fig. 6. Markstein lengths as function of equivalence ratio withdifferent pressure condition at 298 K

SSONB2_2019_v30n1_67_f0007.png 이미지

Fig. 7. Schlieren images of SNG/air premixed flames at Φ=0.7 and 298 K (a) 0.5 MPa, (b) 0.1 MPa

Table 1. Experimental conditions

SSONB2_2019_v30n1_67_t0001.png 이미지

Table 2. Average error in calculated laminar burning velocity of SNG with different mechanisms

SSONB2_2019_v30n1_67_t0002.png 이미지

References

  1. S. H. Kang, J. H. Ryu, S. H. Kim, J. H. Kim, H. S. Kim, K. J. Jeong, J. E. Lee, Y. D. Yoo, and D. J. Koh, "Recent Trends in Production Technology for Synthetic Natural Gas (SNG) from Coal", Journal of Energy Climate Change, Vol. 9, No. 1, 2014, pp. 3-18. Retrieved from http://www.dbpia.co.kr/Article/NODE06204586.
  2. D. Kim and K. Lee, "Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method -", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 6, 2016, pp. 737-746, doi: https://doi.org/10.7316/KHNES.2016.27.6.737.
  3. B. G. Jeong and K. M. Lee, "A Study on the Laminar Burning Velocity and Flame Structure with $H_2$ Content in a Wide Range of Equivalence Ratio of Syngas($H_2$/CO)/Air Premixed Flames", Journal of the Korean Society of Combustion, Vol. 19, No. 1, 2014, pp. 17-28, doi: https://doi.org/10.15231/jksc.2014.19.1.017.
  4. C. K. Law, C. J. Sung, H. Wang, and T. F. Lu, "Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling", AIAA J., Vol. 41, No. 9, 2003, pp. 1629-1646, doi: https://doi.org/10.2514/2.7289.
  5. Z. Chen, "On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames", Comb. and Flame, Vol. 158, No. 2, 2011, pp. 291-300, doi: https://doi.org/10.1016/j.combustflame.2010.09.001.
  6. Z. Chen, "On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure", Comb. and Flame, Vol. 162, No. 6, 2015, pp. 2442-2453, doi: https://doi.org/10.1016/j.combustflame.2015.02.012.
  7. X. Cai, J. Wang, H. Zhao, Y. Xie, and Z. Huang, "Effects of Initiation Radius Selection and Lewis Number on Extraction of Laminar Burning Velocities from Spherically Expanding Flames", Combust. Sci. Technol., Vol. 190, No. 2, 2018, pp. 286-311, doi: https://doi.org/10.1080/00102202.2017.1389912.
  8. G. Rozenchan, D. L. Zhu, C. K. Law, and S. D. Tse, "Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm", Proc. Combust. Inst., Vol. 29, No. 2, 2002, pp. 1461-1470, doi: https://doi.org/10.1016/S1540-7489(02)80179-1.
  9. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, and E. Meeks, "Premix : A fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames", Sandia National Laboratories Report, 1985 SAND 85-8240.
  10. C. K. Wu and C. K. Law, "On the determination of laminar flame speeds from stretched flames", Symposium (International) on Combustion, Vol. 20, No. 1, 1984, pp. 1941-1949, doi: https://doi.org/10.1016/S0082-0784(85)80693-7.
  11. A. P. Kelley and C. K. Law, "Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames", Comb. and Flame, Vol. 156, No. 9, 2009, pp. 1844-1851, doi: https://doi.org/10.1016/j.combustflame.2009.04.004.
  12. P. D. Ronney and H. Y. Wachman, "Effect of Gravity on Laminar Premixed Gas Combustion 1: Flammability Limits and Burning Velocities", Comb. and Flame, Vol. 62, No. 2, 1985, pp. 107-119, doi: https://doi.org/10.1016/0010-2180(85)90139-7.
  13. M. Frenklach, T. Bowman, and G. Smith, "GRI-Mech". Retrieved from http://www.me.berkeley.edu/gri_mech/.
  14. H. Wang, X. You, A. V. Josh, S. G. Davis, A. Laskin, F. N. Egolfopoulos, and C. K. Law, "USC Mech Version II". Retrieved from http://ignis.usc.edu/USC_Mech_II.htm.
  15. UC SanDiego, "The San Diego Mechanism". Retrieved from http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
  16. D. Bradley, P. H. Gaskell, and X. J. Gu, "Burning Velocities, Markstein Length, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study", Comb. and Flame, Vol. 104, No. 1-2, 1996, pp. 176-198, doi: https://doi.org/10.1016/0010-2180(95)00115-8.
  17. M. Zhou, G. Li, J. Liang, H. Ding, and Z. Zhang, "Effect of ignition energy on the uncertainty in the determination of laminar flame speed using outwardly propagating spherical flames", Proc. Combust. Inst., Vol. 37, No. 2, 2018, pp. 1615-1622, doi: http://dx.doi.org/10.1016/j.proci.2018.07.084.
  18. M. P. Burke, Z. Chen, Y. Ju, and F. L. Dryer, "Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames", Comb. and Flame, Vol. 156, No. 4, 2009, pp. 771-779, doi: https://doi.org/10.1016/j.combustflame.2009.01.013.
  19. F. N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-Hoinghaus, C. K. Law, and F. Qi, "Advances and challenges in laminar flame experiments and implications for combustion chemistry", Prog. Energy Combust. Sci., Vol. 43, 2014, pp. 36-67, doi: https://doi.org/10.1016/j.pecs.2014.04.004.
  20. C. K. Law, "Combustion Physics", Cambridge University Press, UK, 2010, pp. 278-282.
  21. E. C. Okafor, Y. Nagano, and T. Kitagawa, "Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressure", International Journal of Hydro gen Energy, Vol. 41, No. 15, 2016, pp. 6581-6592, doi: https://doi.org/10.1016/j.ijhydene.2016.02.151.