• Title/Summary/Keyword: Lagrangian Velocity

Search Result 173, Processing Time 0.028 seconds

FE Analysis of Three Dimensional Backward Extrusion Using the ALE description (ALE 묘사에 왜한 3차원 후방압출 해석)

  • 정상원;정용호;김규하;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.628-631
    • /
    • 2002
  • This paper has executed FE-analysis to review the feasibility for developing the process, which produces the narrow-cubic type cans, using the Backward Impact Extrusion process instead of using current process, multi-stage deep drawing. Proposes an analysis method by applying ALE(Arbitrary Lagrangian-Eulerian) description to non-axisymmetric extrusion. which is appreciated as one of good solution to mesh distortion in case of the large deformation plasticity process that has mass flux, and considers the factors which affects forming-loads related to punch velocity and fulid status of material.

  • PDF

Shape Optimization of Energy Flow Problems Using Level Set Method (레벨 셋 기법을 이용한 에너지 흐름 문제의 형상 최적화)

  • Seung-Hyun, Ha;Seonho, Cho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.411-418
    • /
    • 2004
  • Using a level set method we develop a shape optimization method applied to energy flow problems in steady state. The boundaries are implicitly represented by the level set function obtainable from the 'Hamilton-Jacobi type' equation with the 'Up-wind scheme.' The developed method defines a Lagrangian function for the constrained optimization. It minimizes a generalized compliance, satisfying the constraint of allowable volume through the variations of implicit boundary. During the optimization, the boundary velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian function. Compared with the established topology optimization method, the developed one has no numerical instability such as checkerboard problems and easy representation of topological shape variations.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Development of interface elements for the analysis of fluid-solid problems (유체-고체 상호작용 해석을 위한 계면요소의 개발)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF

Characteristics of Solitary Waves Acting on Slopes (경사면에 작용하는 고립파의 특성)

  • Jeon, Chan-Hoo;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.779-786
    • /
    • 2002
  • A boundary element method with a Lagrangian approach and B-spline technique is employed to investigate characteristics of solitary waves attacking on beach slopes. By comparing numerical solutions with available laboratory measurements, it is shown that the maximum run-up heights of the present model are more agreeable than those of the existing numerical model. Variations of run-up heights and velocity vectors for different slopes are also described. Characteristics of hydrodynamic pressure acting beach slopes are investigated in detail.

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer (혼합층에서 속도비 변화에 따른 입자확산 유동해석)

  • Seo, Tae Won;Kim, Tae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.

The analysis and optimization of dual armor plate considering EQPS (EQPS를 이용한 복합장갑의 해석 및 최적설계)

  • 박명수;유정훈;정동택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model (수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석)

  • Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.