• Title/Summary/Keyword: Lag Compensation

Search Result 32, Processing Time 0.026 seconds

Integrated Engine-CVT Control Considering Powertrain Response Lag in Acceleration

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.764-772
    • /
    • 2000
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the inertia torque and the CVT ratio change response lag in acceleration. In order to compensate for drive torque time delay due to CVT response lag, two algorithms are presented: (1) an optimal engine torque compensation algorithm, and (2) an optimal engine speed compensation algorithm. Simulation results show that the optimal engine speed compensation algorithm gives better engine operation around the optimal operation point compared to the optimal torque compensation while showing nearly the same acceleration response. The performance of the proposed engine-CVT integrated control algorithms are compared with those of conventional CVT control, and It is found that optimal engine operation can be achieved by using integrated control during acceleration, and improved fuel economy can be expected while also satisfying the driver's demands.

  • PDF

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

Investigating the Time Lag Effect between Economic Recession and Suicide Rates in Agriculture, Fisheries, and Forestry Workers in Korea

  • Yoon, Jin-Ha;Junger, Washington;Kim, Boo-Wook;Kim, Young-Joo;Koh, Sang-Baek
    • Safety and Health at Work
    • /
    • v.3 no.4
    • /
    • pp.294-297
    • /
    • 2012
  • Previous studies on the vast increase in suicide mortality in Southeast Asia have indicated that suicide rates increase in parallel with a rise in unemployment or during periods of economic recession. This paper examines the effects of economic recession on suicidal rates amongst agriculture, fisheries, and forestry workers in Korea. Monthly time-series gross domestic product (GDP) data were linked with suicidal rates gathered from the cause of death records between1993-2008. Data were analyzed using generalized additive models to analyze trends, while a polynomial lag model was used to assess the unconstrained time lag effects of changes in GDP on suicidal rate. We found that there were significant inverse correlations between changes in GDP and suicide for a time lag of one to four months after the occurrence of economic event. Furthermore, it was evident that the overall relative risks of suicide were high enough to bring about social concern.

Robust Digital Nonlinear Friction Compensation - Theory (견실한 비선형 마찰보상 이산제어 - 이론)

  • 강민식;김창제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF

Robust Digital Nonlinear Friction Compensation (견실한 비선형 마찰보상 이산제어)

  • 강민식;송원길;김창재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.987-993
    • /
    • 1996
  • This report suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteric nonlinear clement which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. The Lyapunov direct method is used to prove the asymtotic stability of the suggested control, and the stability and the effectiveness are verified analytically and experimentally on a single axis servo driving system.

  • PDF

Development of Vehicle Driver Model For Virtual Driving Test (가상주행시험을 위한 차량 운전자 모델 개발)

  • Lee, Hong-ki;Chun, hyung-ho;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.273-280
    • /
    • 2001
  • In this study, a driver model based on the lead-lag controller for stable maneuver of a highly nonlinear, multi-dimensional, numerically stiff multibody vehicle model according to the various handling test requirements such as steady-state cornering, double lange change, etc. is presented The lead-lag controller is developed with lead and lag compensation. which use the transfer function with cross-over frequency by frequency response method. The proposed driver model is applied to a vehicle model in steady-state and slalom maneuver to verify its effectiveness and validity. The results show that the proposed path control strategy is excellent both in pursuing the desired course and stability of the vehicle.

  • PDF

Engine-CVT Integrated Control Algorithm Considering Power train Loss and CVT Response Lag (동력전달계 동력손실계 CVT 응답지연을 고려한 엔진-CVT 통합제어 알고리즘)

  • 김달철;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.112-121
    • /
    • 2001
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the powertrain loss, inertia torque and the CVT ratio response lag. The integrated control algorithm consists of (1) the optimal engine power calculation and (2) determining of the optimal throttle valve opening and the optimal CVT ratio. The optimal engine power is obtained by compensating the inertia torque due to the CVT ratio change and the powertrain loss that is calculated iteration procedure. In addition, an algorithm to compensate the effect of the CVT ratio response lag on the drive torque is suggested by the engine speed compensation causing the increased optimal CVT ratio. Simulation results show that the engine-CVT integrated control algorithm developed in this study makes it possible to obtain better engine operation on the optimal operating line, which results in the improved fuel economy while satisfying the driver's demand.

  • PDF

Measurement of Compression Temperature in Cylinder by using the Compensation Circuit of Thermocouple (열전대 보상회로에 의한 실린더 내에서의 압축온도 측정)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.149-154
    • /
    • 2000
  • The purpose of this study is to measure the compression temperature in cylinder by using the fine thermocouple. As for using the thermocouple, it's response time delay should be regarded, even if it is a fine one. So, the output of thermocouple needs some compensation. The compensation circuit, which consists of a differential and an adding circuit is used for the compensate the time lag. And the time constant of the compensation circuit is determined the time between the TDC and the maximum point of the thermocouple output. Using this compensation circuit, the compression temperature is investigated of the cylinder in the diesel engine.

  • PDF

Control of a Flexible Link with Time Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1136-1141
    • /
    • 2004
  • This paper presents a control method for time-delay systems and verifies the performance of the designed control system via real experiments. Specifically, the control method is applied to a flexible-link system with time delays. The method combines time- and frequency-domain controllers: linear quadratic optimal controller (or LQR) and lag compensator. The LQR is used to stabilize the system in optimal fashion, whereas the lag compensator is used to compensate time-delay effects by increasing the delay margin of the system. With this methodology, the maximum allowable time delay can be increased significantly. The proposed method is simple but quite practical for time-delay system control as it is based on the conventional loop-shaping method, which gives practical insights on delay-phase relationship. Simulation and experiment results show that the method presented in this paper is feasible and practical.

  • PDF

Robust Digital Nonlinear Friction Compensation-Application (견실한 비선형 마찰보상 이산제어 - 응용)

  • Kang, M.S.;Song, W.G.;Kim, C.J.;Lee, S.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.108-117
    • /
    • 1997
  • To prove the stability and the effectiveness of the robust non-linear friction control suggested and proved analytically in the previous paper, the describing function analysis is introduced. The instability of the Southward's nonlinear friction compensation for a digital position control and the improvement of phase margin of the robust nonlinear friction compensation are verified qualitatively through the describing function analysis. Those controls are applied to a single-axis digital servo driving experimental setup which has inherent stick-slip friction and experimental results confirm the results obtained in and the effectiveness of the robust nonlinear friction compensation for a digital position control.

  • PDF