• Title/Summary/Keyword: Lactobacillus plantarum A

Search Result 590, Processing Time 0.03 seconds

Potential Use of Probiotic Consortium Isolated from Kefir for Textile Azo Dye Decolorization

  • Ayed, Lamia;Zmantar, Tarek;Bayar, Sihem;Charef, Abdelkrim;Achour, Sami;Mansour, Hedi Ben;Mzoughi, Ridha El
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1629-1635
    • /
    • 2019
  • Azo dyes are recalcitrant pollutants, which are toxic, carcinogenic, mutagenic and teratogenic, that constitute a significant burden to the environment. The decolorization and the mineralization efficiency of Remazol Brillant Orange 3R (RBO 3R) was studied using a probiotic consortium (Lactobacillus acidophilus and Lactobacillus plantarum). Biodegradation of RBO 3R (750 ppm) was investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 11.5 and temperature $25^{\circ}C$. The bio-decolorization process was further confirmed by FTIR and UV-Vis analysis. Under optimal conditions, the bacterial consortium was able to decolorize the dye completely (>99%) within 12 h. The color removal was 99.37% at 750 ppm. Muliplex PCR technique was used to detect the Lactobacillus genes. Using phytotoxicity, cytotoxicity, mutagenicity and biototoxicity endpoints, toxicological studies of RBO 3R before and after biodegradation were examined. A toxicity assay signaled that biodegradation led to detoxification of RBO 3R dye.

Cloning and Characterization of the Lactate Dehydrogenase Genes from Lactobacillus sp. RKY2

  • Lee, Jin-Ha;Choi, Mi-Hwa;Park, Ji-Young;Kang, Hee-Kyoung;Ryu, Hwa-Won;Sunwo, Chang-Sin;Wee, Young-Jung;Park, Ki-Deok;Kim, Do-Won;Kim, Do-Man
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.318-322
    • /
    • 2004
  • Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (ldhL and ldhD) encoding the L-(+) and D-(-) lactate dehydrogenases (L-LDH and D-LDH) were cloned from Lactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames of ldhL for and ldhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(-)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes of Lactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.

Studies on the Utilization of Wastes from Fish Processing I - Characteristics of Lactic Acid Bacteria for Preparing Skipjack Tuna Viscera Silage (수산물 가공부산물의 이용에 관한 연구 I -가다랭이 내장 발효 silage 제조를 위한 유산균주의 배양특성)

  • YOON Ho-Dong;LEE Doo-Seog;JI Cheong-Il;SUH Sang-Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • In order to utilize fish by-products from the skipjack tuna (Katsuwonus pelamis) canning manufactures Lactobacillus buigaricus KCTC 3188 and L. piantarum KCTC 1048 were used as a starter culture for the preparation of fermented fish silage with skipjark tuna viscera. The optimum temperature and pH on barterial growth and lactic acid production of L. bulgaricus and L. plantarum in MRS broth were $35^{\circ}C$ and around pH 6.0, respectively. And the optimum concentrations of the carbohydrate sources added to the broths were $7\%$ for dextrose and $10\%$ for molasses on the basis of total weights of skipjack tuna viscera. The pH of acid treated skipjack tuna viscera silage (ASS) slightly increased from 4.0 to 4.5, while that of fermented skipjack tuna viscera silages by the use of lactic acid bacterias (FSS) was significantly declined from 5.9 to about 40 after 42 days of storage at $35^{\circ}C$. Though the content of volatile basie nitrogen (VBN) in ASS was lower than those of FSS after 42 days of storage at $35^{\circ}C$, VBN content in silages slightly increased from an initial value of $62\~65{\cdot}mg/100g$ to final value of $113\~155\;mg/100g$ over 42 days. The fermented silage by L. piantarum reached a maximum concentration of amino nitrogen and showed $81\%$ of hydrolysis degree after 4 days of storage at $35^{\circ}C$.

  • PDF

Screening of conjugated linoleic acid (CLA) producing Lactobacillus plantarum and production of CLA on soy-powder milk by these stains (공액리놀레산 생성 Lactobacillus plantarum 선발 및 이를 이용한 콩-분말 두유에서 공액리놀레산 생산)

  • Kim, Baolo;Lee, Byong Won;Hwang, Chung Eun;Lee, Yu-Young;Lee, Choonwo;Kim, Byung Joo;Park, Ji-Yong;Sim, Eun-Yeong;Haque, Md. Azizul;Lee, Dong Hoon;Lee, Jin Hwan;Ahn, Min Ju;Lee, Hee Yul;Ko, Jong Min;Kim, Hyun Tae;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • In this study, a total of 16 conjugated linoleic acid (CLA) producing lactic acid bacteria (LAB) were isolated from fermented foods. Among those strains, the S48 and P1201 strains were capable of producing higher CLA contents than other LABs. The two strains were classified as Lactobacillus plantarum based on morphological, physiological, chemotaxonomic, and molecular-genetic properties. The survival rates of these strain appeared to be 59.57% and 62.22% under artificial gastric conditions after 4 h at pH 2.5, respectively. These strains produced the cis-9, trans-11, and trans-10, cis-12 CLA isomers from 8% skim milk medium supplemented with the different free LA concentration at $37^{\circ}C$ for 48 h and the production of two CLA isomers constantly increased in the growth until 48 h of incubation. After 48 h of fermentation, the levels of CLA appeared highest in steamed soy-powder milk than fresh and roasted soy-powder milks. In particular, the CLA contents were produced $183.57{\mu}g/ml$ and $198.72{\mu}g/ml$ from steamed soy-powder milk after fermentation (48 h) with S48 and P1201 strains, respectively.

Changes in phytoestrogen contents and antioxidant activities during fermentation of soybean-powder milks prepared from different soybean cultivars by Lactobacillus plantarum P1201 (Lactobacillus plantarum P1201에 의한 콩 품종별 콩-분말 두유 발효 과정에서의 식물성 에스트로젠 함량과 항산화 활성의 변화)

  • Hwang, Chung Eun;Haque, Md. Azizul;Lee, Jin Hwan;Ahn, Min Ju;Lee, Hee Yul;Lee, Byong Won;Lee, Yu-Young;Lee, Choonwo;Kim, Byung Joo;Park, Ji-Yong;Sim, Eun-Yeong;Lee, Dong Hoon;Ko, Jong Min;Kim, Hyun Tae;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.202-211
    • /
    • 2016
  • This study evaluated the changes of phytoestrogen contents and antioxidant activities of soybean-powder milk (SPM) prepared from yellow soybean during fermentation with Lactobacillus plantarum P1201. In consequence, the levels of total phenolic and isoflavone-aglycone contents, ABTS and DPPH radical-scavenging activities, and FRAP assay values increased, while isoflavone-glycoside contents decreased during fermentation. The highest levels of daidzein, glycitein, and genistein were present in the Daepung SPM at concentrations of 177.92, 20.64, and $106.14{\mu}g/g$, respectively after 60 h of fermentation. Moreover, Daepung SPM showed the highest DPPH radical-scavenging activity of 48.54%, an ABTS radical-scavenging activity of 99.25%, and a FRAP assay value of 0.84 at the end of fermentation. The fermented Daepung SPM possessed highest isoflavone aglycone contents and antioxidant activities, which can be utilized for the development of functional foods.

Isolation of a Bacteriocin - Producing Lactobacillus sakei Strain from Kimchi (김치에서 박테리오신을 분비하는 Lactobacillus sakei균주의 분리)

  • 김한택;박재용;이강권;김정환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.560-565
    • /
    • 2004
  • Bacteriocin producing lactic acid bacteria (LAB) were isolated from Kimchi by using spot-on-the-lawn method. Listeria monocytogenes, Staphylococcus aureus, and Lactobacillus plantarum were used as indicators. One isolate (P3-l) produced a bacteriocin efficiently inhibiting the growth of Listeria monocytogenes. 16S rDNA sequence and sugar utilization test identified that P3-1 was a Lactobacillus sakei strain. Accordingly, the isolate was named as Lactobacillus sakei P3-1. L. sakei P3-1 produced a bacteriocin which efficiently inhibited the growth of Listeria monocytogenes but did not inhibit other Gram positive and negative organisms tested. The bacteriocin was stable against heat, organic solvent, and pH variation and it retained 50% of activity after 10 min heat treatment at 10$0^{\circ}C$. The molecular weight of Sakacin P3-1 was estimated to be 4 kDa by SDS-PAGE.

Physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 (분무건조공정을 이용한 유산균포집 미분의 제조 및 물리화학적 특성)

  • Park, Hye-Mi;Lee, Dae-Hoon;Jeong, Yoo-Seok;Jung, Hee-Kyoung;Cho, Jae-Gon;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.392-398
    • /
    • 2015
  • The physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 were investigated. Amylose and damaged starch contents of spray-dried rice flour (S10, S20, S30, and S50) with L. plantarum CGKW3 were 14.18~17.75% and 24.65~34.08%, respectively. The particle size of spray-dried rice flour was $82.28{\sim}131.17{\mu}m$. The rice flour with L. plantarum CGKW3 showed a good powder flowability. The water absorption and water solubility of spray-dried rice flour were 1.96~2.13 and 9.91~21.95%, respectively. Thermal properties measured by differential scanning calorimeter revealed that the enthalpy (${\Delta}H$) for starch gelatinization were highest in the rice flour (S50) with L. plantarum CGKW3. When compared, the viable cell number of spray-dried rice flour were found to be in the following order: S10 (5.78 log CFU/g) < S20 (6.38 log CFU/g) < S30 (6.69 log CFU/g) < S50 (7.11 log CFU/g). The survaival rate of L. plantarum CGKW3 was 60.02-73.85%, which reflected the improvement in the quality of rice flour with an increase in treatment concentration. Based on our results, spray-dried rice flour with L. plantarum CGKW3 could be used in various types of rice foods.

Effects of Staphylococcus carnosus on Quality Characteristics of Sucuk (Turkish Dry-Fermented Sausage) During Ripening

  • Kaban, Guzin;Kaya, Mukerrem
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.150-156
    • /
    • 2009
  • In this study, Staphylococcus carnosus isolated from traditional sucuk (Turkish dry-fermented sausage) was used in combination with Lactobacillus plantarum as a lactic culture in sucuk production. Sucuk produced with only L. plantarum was evaluated as a control group. Microbiological, physicochemical, and volatile profile characteristics of sucuk samples were investigated during ripening. In both sausages with S. carnosus and control group, pH value decreased to below 5.0 at the $3^{rd}$ day. In all samples, Aw value decreased as the ripening time progressed. Sausages with S. carnosus showed the higher nonprotein nitrogen (NPN) value than control group. However, the highest mean value for thiobarbituric acid reactive substances (TBARS) was observed in control group. Enterobacteriaceae dropped to undetectable levels at the $3^{rd}$ day in both groups. S. carnosus increased approximately 1 log unit within the first 3 days of the fermentation. In the presence of S. carnosus, significant changes were observed in only a few volatile compounds.

Heat-Killed Lactiplantibacillus plantarum LRCC5314 Mitigates the Effects of Stress-Related Type 2 Diabetes in Mice via Gut Microbiome Modulation

  • Nam, YoHan;Yoon, Seokmin;Baek, Jihye;Kim, Jong-Hwa;Park, Miri;Hwang, KwangWoo;Kim, Wonyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.324-332
    • /
    • 2022
  • The incidence of stress-related type 2 diabetes (stress-T2D), which is aggravated by physiological stress, is increasing annually. The effects of Lactobacillus, a key component of probiotics, have been widely studied in diabetes; however, studies on the effects of postbiotics are still limited. Here, we aimed to examine the mechanism through which heat-killed Lactiplantibacillus plantarum LRCC5314 (HK-LRCC5314) alleviates stress-T2D in a cold-induced stress-T2D C57BL/6 mouse model. HK-LRCC5314 markedly decreased body weight gain, adipose tissue (neck, subcutaneous, and epididymal) weight, and fasting glucose levels. In the adipose tissue, mRNA expression levels of stress-T2D associated factors (NPY, Y2R, GLUT4, adiponectin, and leptin) and pro-inflammatory factors (TNF-α, IL-6, and CCL-2) were also altered. Furthermore, HK-LRCC5314 increased the abundance of Barnesiella, Alistipes, and butyrate-producing bacteria, including Akkermansia, in feces and decreased the abundance of Ruminococcus, Dorea, and Clostridium. Thus, these findings suggest that HK-LRCC5314 exerts protective effects against stress-T2D via gut microbiome modulation, suggesting its potential as a supplement for managing stress-T2D.

Analysis of Nodakenetin from Samultangs Fermented by Lactose Bactera Strains (유산균 발효에 의한 사물탕들부터 노다케네틴의 분리 및 함량분석)

  • Kim, Dong-Seon;Roh, Joo-Hwan;Cho, Chang-Won;Ma, Jin-Yeul
    • The Korea Journal of Herbology
    • /
    • v.27 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the changes in the contents of constituents in Samultang and its fermentations with 10 species of lactic acid bacteria. Methods : Ten strains of lactic acid bacteria, Lactobacillus casei, L. acidophilus, L. casei, L. plantarum, L. amylophilus, L. curvatus, L. delbruekil subsp. lactis, L. casei, B. breve, and B. thermophilum, were used for the fermentation of Samultang. The increased and decreased constituents were identified using HPLC/DAD and various liquid chromatographic techniques, and the structure was elucidated using NMR and MS. These compounds were quantitatively analyzed using an HPLC/DAD system. Results : A remarkably increased component was identified to be nodakenetin and a decreased component was determined to be nodakenin. The fermentation of the ten lactic acid bacteria demonstrated that the decomposable rate of these two compounds in fermented Samultang were different. Samultang fermented by L. plantarum showed the most remarkable changes. Conclusion : Nodakenetin was identified as bioconversion component after fermentation and L. plantarum was discovered the best bacteria to increase the component.