Browse > Article
http://dx.doi.org/10.4014/jmb.2111.11008

Heat-Killed Lactiplantibacillus plantarum LRCC5314 Mitigates the Effects of Stress-Related Type 2 Diabetes in Mice via Gut Microbiome Modulation  

Nam, YoHan (Department of Microbiology, College of Medicine, Chung-Ang University)
Yoon, Seokmin (Department of Microbiology, College of Medicine, Chung-Ang University)
Baek, Jihye (Department of Microbiology, College of Medicine, Chung-Ang University)
Kim, Jong-Hwa (Department of Microbiology, College of Medicine, Chung-Ang University)
Park, Miri (Lotte R&D Center)
Hwang, KwangWoo (College of Pharmacy, 2 Chung‐Ang University)
Kim, Wonyong (Department of Microbiology, College of Medicine, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.3, 2022 , pp. 324-332 More about this Journal
Abstract
The incidence of stress-related type 2 diabetes (stress-T2D), which is aggravated by physiological stress, is increasing annually. The effects of Lactobacillus, a key component of probiotics, have been widely studied in diabetes; however, studies on the effects of postbiotics are still limited. Here, we aimed to examine the mechanism through which heat-killed Lactiplantibacillus plantarum LRCC5314 (HK-LRCC5314) alleviates stress-T2D in a cold-induced stress-T2D C57BL/6 mouse model. HK-LRCC5314 markedly decreased body weight gain, adipose tissue (neck, subcutaneous, and epididymal) weight, and fasting glucose levels. In the adipose tissue, mRNA expression levels of stress-T2D associated factors (NPY, Y2R, GLUT4, adiponectin, and leptin) and pro-inflammatory factors (TNF-α, IL-6, and CCL-2) were also altered. Furthermore, HK-LRCC5314 increased the abundance of Barnesiella, Alistipes, and butyrate-producing bacteria, including Akkermansia, in feces and decreased the abundance of Ruminococcus, Dorea, and Clostridium. Thus, these findings suggest that HK-LRCC5314 exerts protective effects against stress-T2D via gut microbiome modulation, suggesting its potential as a supplement for managing stress-T2D.
Keywords
Stress-T2D; Lactiplantibacillus plantarum; postbiotics; heat-killed; microbiome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deshpande G, Athalye-Jape G, Patole S. 2018. Para-probiotics for preterm neonates- the next frontier. Nutrients 10: 871.   DOI
2 Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. 2007. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27: 10695-10702.   DOI
3 Bastiaanssen TF, Gururajan A, van de Wouw M, Moloney GM, Ritz NL, Long-Smith CM, et al. 2021. Volatility as a concept to understand the impact of stress on the microbiome. Psychoneuroendocrinology 124: 105047.   DOI
4 Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, et al. 2003. Chronic stress and obesity: a new view of "comfort food". Proc. Natl. Acad. Sci. USA 100: 11696-11701.   DOI
5 KFDA (Food and Drug Administration of Korea). 2021. Korean FDA Guidelines for Bioequivalence Test. KFDA.
6 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13: 581-583.   DOI
7 Uchinaka A, Azuma N, Mizumoto H, Nakano S, Minamiya M, Yoneda M, et al. 2018. Anti-inflammatory effects of heat-killed Lactobacillus plantarum L-137 on cardiac and adipose tissue in rats with metabolic syndrome. Sci. Rep. 8: 8156.   DOI
8 Mahboubi M. 2019. Lactobacillus gasseri as a functional food and its role in obesity. Int. J. Med. Rev. 6: 59-64.   DOI
9 Wang C, Li S, Xue P, Yu L, Tian F, Zhao J, et al. 2021. The effect of probiotic supplementation on lipid profiles in adults with overweight or obesity: a meta-analysis of randomized controlled trials. J. Funct. Foods 86: 104711.   DOI
10 Lee J, Jang JY, Kwon MS, Lim SK, Kim NH, Lee J, et al. 2018. Mixture of two Lactobacillus plantarum strains modulates the gut microbiota structure and regulatory T cell response in diet-induced obese mice. Mol. Nutr. Food Res. 62: 1800329.   DOI
11 Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 9: 1-15.   DOI
12 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'hara RB, et al. 2013. Package 'vegan'. Community Ecol package Version 2: 1-295.
13 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.   DOI
14 Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51: 102590.   DOI
15 Seong G, Lee S, Min YW, Jang YS, Kim HS, Kim EJ, et al. 2021. Effect of heat-killed Lactobacillus casei DKGF7 on a rat model of irritable bowel syndrome. Nutrients 13: 568.   DOI
16 Watanabe J, Hashimoto N, Yin T, Sandagdorj B, Arakawa C, Inoue T, et al. 2021. Heat-killed Lactobacillus brevis KB290 attenuates visceral fat accumulation induced by high-fat diet in mice. J. Appl. Microbiol. 131: 1998-2009.   DOI
17 Ergang P, Vagnerova K, Hermanova P, Vodicka M, Jagr M, Srutkova D, et al. 2021. The gut microbiota affects corticosterone production in the murine small intestine. Int. J. Mol. Sci. 22: 4229.   DOI
18 Seong G, Lee S, Min YW, Jang YS, Park SY, Kim CH, et al. 2020. Effect of a synbiotic containing Lactobacillus paracasei and Opuntia humifusa on a murine model of irritable bowel syndrome. Nutrients 12: 3205.   DOI
19 Hackett RA, Steptoe A. 2017. Type 2 diabetes mellitus and psychological stress-a modifiable risk factor. Nat. Rev. Endocrinol. 13: 547-560.   DOI
20 Black PH. 2002. Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav. Immun. 16: 622-653.   DOI
21 Foster JA, Rinaman L, Cryan JF. 2017. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol. Stress 7: 124-136.   DOI
22 Taverniti V, Guglielmetti S. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6: 261-274.   DOI
23 McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6: 610-618.   DOI
24 Dominguez-Maqueda M, Cerezo IM, Tapia-Paniagua ST, La Banda D, Garcia I, Moreno-Ventas X, et al. 2021. A tentative study of the effects of heat-inactivation of the probiotic strain Shewanella putrefaciens Ppd11 on senegalese sole (Solea senegalensis) intestinal microbiota and immune response. Microorganisms 9: 808.   DOI
25 Di Dalmazi G, Pagotto U, Pasquali R, Vicennati V. 2012. Glucocorticoids and type 2 diabetes: from physiology to pathology. J. Nutr. Metab. 2012: 525093.   DOI
26 Gong S, Miao YL, Jiao GZ, Sun MJ, Li H, Lin J, et al. 2015. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One 10: e0117503.   DOI
27 Chudzik A, Orzylowska A, Rola R, Stanisz GJ. 2021. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: modulation of the brain-gut-microbiome axis. Biomolecules 11: 1000.   DOI
28 Morais JBS, Severo JS, Beserra JB, de Oiveira ARS, Cruz KJC, de Sousa Melo SR, et al. 2019. Association between cortisol, insulin resistance and zinc in obesity: a mini-review. Biol. Trace Elem. Res. 191: 323-330.   DOI
29 Panwar S, Arora S, Sharma S, Tripathi P. 2020. The gut microbiome and type 2 diabetes mellitus in obesity and diabetes. pp. 283-295. Springer, Cham, Switzeland.
30 Yokota Y, Shikano A, Kuda T, Takei M, Takahashi H, Kimura B. 2018. Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. Int. Immunopharmacol. 56: 119-127.   DOI
31 Aguilar-Toala J, Garcia-Valera R, Garcia HS, Mata-Haro V, Cordova-Gonzalez AF, Hernandez-Mendoza A. 2018. Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol. 75: 105-114.   DOI
32 Vandenplas Y, Bacarea A, Marusteri M, Bacarea V, Constantin M, Manolache M. 2017. Efficacy and safety of APT198K for the treatment of infantile colic: a pilot study. J. Comp. Eff. Res. 6: 137-144.   DOI
33 Park S, Ji Y, Jung HY, Park H, Kang J, Choi SH, et al. 2017. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl. Microbiol. Biotechnol. 101: 1605-1614.   DOI
34 Kim SW, Park KY, Kim B, Kim E, Hyun CK. 2013. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun. 431: 258-263.   DOI
35 Stern JH, Rutkowski JM, Scherer PE. 2016. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23: 770-784.   DOI
36 Cheng YC, Liu JR. 2020. Effect of Lactobacillus rhamnosus GG on energy metabolism, leptin resistance, and gut microbiota in mice with diet-induced obesity. Nutrients 12: 2557.   DOI
37 Maurizi G, Della Guardia L, Maurizi A, Poloni A. 2018. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J. Cell. Physiol. 233: 88-97.   DOI
38 Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, et al. 2014. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14: 189.   DOI
39 Minor RK, Chang JW, De Cabo R. 2009. Hungry for life: how the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol. Cell. Endocrinol. 299: 79-88.   DOI
40 Black PH. 2006. The inflammatory consequences of psychologic stress: relationship to insulin resistance, obesity, atherosclerosis and diabetes mellitus, type II. Med. Hypotheses 67: 879-891.   DOI
41 Youn HS, Kim JH, Lee JS, Yoon YY. Choi SJ, Lee JY, et al. 2021. Lactobacillus plantarum reduces low-grade inflammation and glucose levels in a mouse model of chronic stress and diabetes. Infect. Immun. 89: IAI. 00615-20.
42 Ahmad A, Yang W, Chen G, Shafiq M, Javed S, Ali Zaidi SS, et al. 2019. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One 14: e0226372.   DOI
43 Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, et al. 2019. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol. Nutr. Food Res. 63: 1900603.   DOI
44 Burta O, Iacobescu C, Mateescu RB, Nicolaie T, Tiuca N, Pop CS. 2018. Efficacy and safety of APT036 versus simethicone in the treatment of functional bloating: a multicentre, randomised, double-blind, parallel group, clinical study. Transl. Gastroenterol. Hepatol. 3: 72.   DOI
45 Nirupama R, Rajaraman B, Yajurvedi HN. 2018. Stress and glucose metabolism: a review. Imaging J. Clin. Med. Sci. 5: 008-012.
46 Lee E, Jung SR, Lee SY, Lee NK, Paik HD, Lim SI. 2018. Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism. Nutrients 10: 643.   DOI
47 Reichmann F, Holzer P. 2016. Neuropeptide Y: A stressful review. Neuropeptides 55: 99-109.   DOI
48 Flemming A. 2007. Stress and obesity connect at NPY. Nat. Rev. Drug Discov. 6: 701-701.   DOI
49 Entringer S, Wust S, Kumsta R, Layes IM, Nelson EL, Hellhammer DH, et al. 2008. Prenatal psychosocial stress exposure is associated with insulin resistance in young adults. Am. J. Obstet. Gynecol. 199: 498-e1.
50 Herman MA, Kahn BB. 2006. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Investig. 116: 1767-1775.   DOI
51 Wu WK, Panyod S, Ho CT, Kuo CH, Wu MS, Sheen LY. 2015. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota. J. Funct. Foods 15: 408-417.   DOI
52 Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. 2013. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8: e71108.   DOI
53 Kontis V, Mathers CD, Rehm J, Stevens GA, Shield KD, Bonita R, et al. 2014. Contribution of six risk factors to achieving the 25×25 non-communicable disease mortality reduction target: a modelling study. Lancet 384: 427-437.   DOI
54 Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 3123-3124.   DOI
55 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071.   DOI
56 Munoz-Garach A, Diaz-Perdigones C, Tinahones FJ. 2016. Gut microbiota and type 2 diabetes mellitus. Endocrinol. Nutr. 63: 560-568.   DOI
57 Li X, Huang Y, Song L, Xiao Y, Lu S, Xu J, et al. 2020. Lactobacillus plantarum prevents obesity via modulation of gut microbiota and metabolites in high-fat feeding mice. J. Funct. Foods 73: 104103.   DOI
58 Tanaka Y, Hirose Y, Yamamoto Y, Yoshikai Y, Murosaki S. 2019. Daily intake of heat-killed Lactobacillus plantarum L-137 improves inflammation and lipid metabolism in overweight healthy adults: a randomized-controlled trial. Eur. J. Nutr. 59: 2641-2649.
59 Li H, Liu F, Lu J, Shi J, Guan J, Yan F, et al. 2020. Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice. Front. Microbiol. 11: 512.   DOI
60 Tomasik P, Tomasik P. 2020. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci. 10: 1470.   DOI
61 Zhu P, Zhang ZH, Huang XF, Shi YC, Khandekar N, Yang HQ, et al. 2018. Cold exposure promotes obesity and impairs glucose homeostasis in mice subjected to a high-fat diet. Mol. Med. Rep. 18: 3923-393.
62 Ige AO, Iwaloye OI, Adewoye EO. 2017. Metformin effects are augmented by chronic intermittent cold stress in high fat diet fed male wistar rats. Niger. J. Physiol. Sci. 32: 47-54.
63 Murata M, Kondo J, Iwabuchi N, Takahashi S, Yamauchi K, Abe F, et al. 2018. Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef. Microbes 9: 855-864.   DOI
64 Lee YS, Lee D, Park GS, Ko SH, Park J, Lee YK, Kang J. 2021. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota. Food Funct. 12: 6363-6373.   DOI
65 Fung TC, Olson CA, Hsiao EY. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20: 145-155.   DOI
66 Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858.   DOI
67 Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO. 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8: e54617.   DOI
68 McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217.   DOI
69 Hotel ACP, Cordoba A. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5: 1-10.
70 Boyle RJ, Robins-Browne RM, Tang ML. 2006. Probiotic use in clinical practice: what are the risks?. Am. J. Clin. Nutr. 83: 1256-1264.   DOI
71 O'Toole PW, Marchesi JR, Hill C. 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2: 17057.   DOI
72 Pique N, Berlanga M, Minana-Galbis D. 2019. Health benefits of heat-killed (Tyndallized) probiotics: an overview. Int. J. Mol. Sci. 20: 2534.   DOI
73 Zhou Y, Inoue N, Ozawa R, Maekawa T, Izumo T, Kitagawa Y, et al. 2013. Effects of heat-killed Lactobacillus pentosus S-PT84 on postprandial hypertriacylglycerolemia in rats. Biosci. Biotechnol. Biochem. 77: 591-594.   DOI
74 Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63: 727-735.   DOI
75 Belzer C, De Vos WM. 2012. Microbes inside from diversity to function: the case of Akkermansia. ISME J. 6: 1449-1458.   DOI
76 Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64: 872-883.   DOI