• Title/Summary/Keyword: Lactobacillus plantarum A

Search Result 590, Processing Time 0.033 seconds

Evaluation of γ-Aminobutyric Acid (GABA) Production by Lactic Acid Bacteria Using 5-L Fermentor (Lactic Acid Bacteria (LAB)와 5-L 발효기를 이용한 γ-Aminobutyric Acid 생산기술 개발)

  • Kim, Na Yeon;Kim, Ji Min;Ra, Chae Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.559-565
    • /
    • 2021
  • This study aimed to optimize gamma-aminobutyric acid (GABA) production by employing five strains of lactic acid bacteria (LAB) that were capable of high cell growth and GABA production using a modified synthetic medium. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. Lactobacillus plantarum SGL058 and Lactococcus lactis SGL027 were selected as the suitable strains for GABA production. The conditions of the carbon and nitrogen sources were determined as 5 g/l glucose (L. plantarum SGL058), 5 g/l lactose (L. lactis SGL027), 10 g/l yeast extract (L. plantarum SGL058), and 20 g/l yeast extract (L. lactis SGL027) for GABA production. The cell growth, monitored by optical density at 600 nm, was 5.93 for L. plantarum SGL058. This value was higher than the 3.04 produced by L. lactis SGL027 at 36 h using a 5-L fermenter. The highest concentration of GABA produced was 546.7 ㎍/ml by L. plantarum SGL058 and 404.6 ㎍/ml by L. lactis SGL027, representing a GABA conversion efficiency of (%, w/w) of 4.0% and 3.4%, respectively. The fermentation profiles of L. plantarum SGL058 and L. lactis SGL027 provide a basis for the utilization of LAB in GABA production using a basal synthetic medium.

Effect of Different Pediococcus pentosaceus and Lactobacillus plantarum Strains on Quality Characteristics of Dry Fermented Sausage after Completion of Ripening Period

  • Seleshe, Semeneh;Kang, Suk Nam
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.636-649
    • /
    • 2021
  • The aim of this study was to evaluate the effect of three different strains of lactic acid bacteria (LAB) starter cultures: Pediococcus pentosaceus (KC-13100) (PP), Lactobacillus plantarum (KCTC-21004) (LP1), and L. plantarum (KCTC-13093) (LP2) on the physicochemical and microbiological characteristics, and sensory quality of dry fermented sausages after 21 days of drying and ripening period. Treatments added with PP and LP2 strains showed a significant higher (p<0.05) LAB and total plat counts, and water activity (aw) of all three treatments was below 0.85 after the completion of the ripening process. A significant variation (p<0.05) in pH values of treatments was exhibited due to the difference in acidification capacity of the LAB strains: LP2PP>LP2. Substantial variations (p<0.05) in shear force values were detected amongst three batches (LP2>LP1>PP). In sensory attributes, PP treated samples had significantly higher (p<0.05) color and overall acceptability scores. The current findings proved how important the optimal assortment of starter culture. Inoculation with PP produced importantly beneficial effects on sensory quality improvement of dry fermented sausage.

Characterization of Selected Lactobacillus Strains for Use as Probiotics

  • Song, Minyu;Yun, Bohyun;Moon, Jae-Hak;Park, Dong-June;Lim, Kwangsei;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.551-556
    • /
    • 2015
  • The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products.

Biochemical and Molecular Identification of Antibacterial Lactic Acid Bacteria Isolated from Kimchi (김치에서 항균활성 유산균의 분리 및 동정)

  • Kim, Soo-Young;Kim, Jong-Doo;Son, Ji-Soo;Lee, Si-Kyung;Park, Kab-Joo;Park, Myeong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.446-452
    • /
    • 2011
  • Total 480 lactic acid-producing bacteria were isolated from five kinds of kimchi, and their antibacterial activity was tested against Salmonella enterica serovar Typhimurium, Bacillus subtilis, and Pseudomonas aeruginosa using an agar diffusion assay. Among them, 340 isolates showed a halo on MRS agar against one or more indicator strains, which were identified using multiplex PCR, an API 50CHL kit, and a 16S rDNA sequence analysis. As a result, 169 Lactobacillus plantarum, 20 Lactobacillus fermentum, two Lactobacillus paracasei ssp. paracasei, two Lactobacillus sp., and 15 Pediococcus sp. were identified. This may be the first report on the isolation of antibacterial Lactobacillus fermentum from kimchi.

Protease Activity of Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food (전통 발효식품으로부터 Protease 활성을 보유한 유산균의 분리 및 동정)

  • Kook, Moo Chang;Cho, Seok Cheol;Park, Hoon;Kim, Seung Seop;Pyun, Yu Ryang;Choi, Woon Yong;Lee, Hyeon Yong
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.182-187
    • /
    • 2011
  • A proteolytic lactic acid bacterium was isolated from Korean traditional fermented foods. The isolate BV-26, which had a protease activity (24 U/mg-crude protein), was identified as Lactobacillus plantarum by the API 50CHL kit and 16S rDNA analysis (99.9% of homology), and named as L. plantarum BV-26. Cell growth and protease activity of L. plantarum BV-26 was determined in MRS broth using 5L jar fermentor at $30^{\circ}C$. The maximum growth of L. plantarum BV-26 was reached at 18 hr in MRS broth, while protease activity of BV-26 was detectable at 12 hr and the highest activity was obtained after 16 hr cultivation. Therefore, we expect that the proteolytic lactic acid bacteria, L. plantarum BV-26, may be used as a starter for the fermentation of animal feed. Especially, the fermentation of soybean meal with the strain can be applied for improving feed utilization.

Preparation of Smart Probiotic Solid Lipid Nanoparticles (SLN) for Target Controlled Nanofood

  • Kim, Dong-Myung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.5-10
    • /
    • 2007
  • Ultrasonication was employed to prepare solid lipid nanoparticles (SLN) for smart probiotic nanoparticles as a nanofood. The model probiotic material, lactocin from Lactobacillus plantarum (CBT-LP2), was incorporated into SLN. The CBT-LP2 loaded SLN (CBT-LP2-SLN) were spherical in the photograph of scanning electron microscope (SEM). The particle size measured by laser diffraction (LD) was found to be $97.3{\pm}8.2nm$. Zeta potential analyzer suggested the zeta potential of LP-SLN was $-29.36{\pm}3.68$ mV in distilled water. The entrapment efficiency (EE%) was determined with the sephadex gel chromatogram and high-performance liquid chromatogram (HPLC), and up to 90.59% of nanofood was incorporated. Stability evaluation showed relatively long-term stability with only slight particle growth (P>0.05) after storage at room temperature for 4 weeks. Therefore, ultrasonication is demonstrated to be a simple, available and effective method to prepare high quality SLN loaded probiotic material.

  • PDF

Studies on synergistic actions of some chemicals on radiation sterilization of Lactobacillus and yeast. "Synergistic actions of D.H.A., Sorbic acid and Menadion." (유산균 및 효모균에 대한 화학물질의 방사선살균협력작용에 관한 연구 "D.H.A., Sorbic acid, 및 Menadion 의 협력작용에 대하여")

  • 김종협;김세열
    • Korean Journal of Microbiology
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 1967
  • The synergistic actions of certain antimetabolic agents for Saccharomyces cerevisiae and Lactobacillus plantarum on radiation sterilization have been studied. The used chemical agents are sorbic acid, vitamin-$K_3$, dehydroacetic acid, p-oxybutyl benzoate and nitrofurazone, those are the permitted as food preservatives. Experimental results are as following, 1) Survival fraction of yeast which was gamma-irradiated and influenced by sorbic acid or vitamin $K_3$ is much reduced than that of only irradiated respectively. 2) It seems like that the used chemicals acts synergistically on radiation sterilization. Sodium-dehydroacetate and p-oxybutyl benzoate are proved to be also synergistic but weakly. 3) Survival fraction of Lact. plantarum which was gamma-irradiated and influenced by sorbic acid, dehydroacetic acid or nitrofurazone respectively much reduced than that of only irradiated group, it can be estimated as synergistic action of chemical affected on radiation sterilization. 4) It was found that nutrient componets can affect radiation sterilization of microorganisms protectively.

  • PDF

흰쥐에 있어서 유산균 Lactobacillus plantarum이 체지방 조성 변화에 미치는 효과

  • Park, Mi-Yeon;Jeong, Hui-Eun;Jo, Jin-Guk;Ha, Cheol-Gyu;Lee, Chi-Ho
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.10a
    • /
    • pp.204-209
    • /
    • 2005
  • 본 실험에서는 Lactobacillus plantarum의 유산균의 수준을 달리하여 흰쥐에 투여함으로써 체지방 조성의 변화와 Atherogenic Index를 측정하였다. 각 군별 체중에 있어서 유의적 차이가 나타나지 않았으며, E.A.T., P.A.T. 중량은 각 군별 유의적인 차이가 있었다 (p<0.05). 또한 각 군별 LDL-Cholesterol과 Free Cholesterol에서만 유의적인 차이를 보였고(p<0.05), Atherogenic Index에서도 유의적인 차이가 있었다(P<0.01). 이 것으로 LDL-cholesterol과 관상동맥 질환과의 관계가 있음을 알 수 있다.

  • PDF

Isolation and characterization of cholesterol-lowering lactic acid bacteria from kimchi (김치에서 분리된 콜레스테롤 감소능을 가진 젖산세균의 특성)

  • Park, Hong-Yeop;Park, Seul-Ki;Kim, Bo-Geum;Ryu, Dae-Gyu;Lim, Eun-Seo;Kim, Young-Mog
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.377-382
    • /
    • 2017
  • The objective of this study was to isolate and characterize lactic acid bacteria (LAB) exhibiting cholesterol-lowering activity from the Korean traditional fermented food, kimchi. The previously isolated LAB strains were assessed for cholesterol-lowering efficacy in the presence of 0.1% cholesterol. All LAB strains tested in this study were able to assimilate cholesterol at varying levels, ranging from 35.0 to 99.4%. Among them, the Lactobacillus plantarum FMB 31 strain exhibited the highest cholesterol-lowering effect with 99.4% cholesterol removal efficiency. The strain was stable in the presence of acid, bile, and salt stress, and showed high adherence on HT-29 cells, a human colon line. In addition, the LAB strain showed no pathogenic properties such as the production of hemolysin and biogenic amines. Thus, this study suggests that the L. plantarum FMB 31 strain isolated from kimchi can be a potential source of probiotic products with strong cholesterol-lowering effect.

Isolation of Garlic Resistant Lactic Acid Bacteria for Feed Additives (사료용 생균제 개발을 위한 마늘 내성 유산균의 분리)

  • Kim, Yu-Jin;Jang, Seo-Jung;Park, Jung-Min;Kim, Chang-Uk;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.352-359
    • /
    • 2009
  • Lactic acid bacteria was isolated for the production of probiotic animal feed supplemented with garlic and its antimicrobial properties were investigated. A total of 112 strains of lactic acid bacteria which grew on the medium containing garlic extract were isolated from kimchi, jeotgal, and jangachi. Among them 14 strains were tested for acidand bile salt-resistance as well as antimicrobial activities against animal pathogenic bacteria such as Salmonella choleraesuis, Escherichia coli, Staphylococcus aureus, and Shigella flexneri. Of these strains, a strain P'GW50-2 from pickled scallion with most desirable properties was selected and identified as Lactobacillus plantarum TJ-LP-002. Antimicrobial activity of L. plantarum TJ-LP-002 showed relatively wide range of inhibition spectrum against Gram negative bacteria such as Aeromicrobium hydrophila, E. coli, Pseudomonas, Salmonella, Shigella, and some Gram positive bacteria such as Bacillus cereus, Staphylococcus aureus, Clostridium perfringens, and Propionibacterium.