• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 966, Processing Time 0.024 seconds

Physicochemical Characteristics and Antioxidant Capacity in Yogurt Fortified with Red Ginseng Extract

  • Jung, Jieun;Paik, Hyun-Dong;Yoon, Hyun Joo;Jang, Hye Ji;Jeewanthi, Renda Kankanamge Chaturika;Jee, Hee-Sook;Li, Xiang;Lee, Na-Kyoung;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.412-420
    • /
    • 2016
  • The objective of this study was to investigate characteristics and functionality of yogurt applied red ginseng extract. Yogurts added with red ginseng extract (0.5, 1, 1.5, and 2%) were produced using Lactobacillus acidophilus and Streptococcus thermophilus and stored at refrigerated temperature. During fermentation, pH was decreased whereas titratable aicidity and viable cell counts of L. acidophilus and S. thermophilus were increased. The composition of yogurt samples was measured on day 1, an increase of red ginseng extract content in yogurt resulted in an increase in lactose, protein, total solids, and ash content, whereas fat and moisture content decreased. The pH value and cell counts of L. acidophilus and S. thermophilus were declined, however titratable acidity was increased during storage period. The antioxidant capacity was measured as diverse methods. During refrigerated storage time, the value of antioxidant effect was decreased, however, yogurt fortified with red ginseng extract had higher capacity than plain yogurt. The antioxidant effect was improved in proportion to concentration of red ginseng extract. These data suggests that red ginseng extract could affect to reduce fermentation time of yogurt and enhance antioxidant capacity.

Antibacterial Effects against Various Foodborne Pathogens and Sensory Properties of Yogurt Supplemented with Panax ginseng Marc Extract

  • Eom, Su Jin;Hwang, Ji Eun;Kim, Kee-Tae;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.787-791
    • /
    • 2017
  • Panax ginseng marc is produced from fresh ginseng roots during processing and is generally treated as industrial waste. The primary aim of this study was to improve its utilization in the dairy industry as a potential high-value resource. Yogurt was prepared from 11% skim milk powder, 0.1% pectin, 10% sucrose, and ginseng marc ethanol extract (GME, 0.5% and 1.0%) in milk, and was inoculated with a 0.02% yogurt culture (Lactobacillus acidophilus, Bifido-bacterium longum, and Streptococcus thermophilus). After fermentation at $40^{\circ}C$ for 6-8 h, the physicochemical properties of samples were analyzed by the AOAC, Kjeldahl, and Soxhlet methods. Sensory evaluation was performed based on consumer acceptability scores with a 7-point scale, and antimicrobial effects were measured by the agar plate method. The moisture, crude protein, crude fat, and ash contents of yogurt supplemented with 1% GME were $85.06{\pm}0.06%$, $4.41{\pm}0.01%$, $4.30{\pm}0.05%$, and $0.81{\pm}0.03%$, respectively, with no significant changes noted from those of yogurt without GME (control), except for an increase in the crude fat content. The sensory scores of color, flavor, texture, overall taste, and overall acceptance of yogurt supplemented with below 1% GME did not differ significantly (p<0.05) to those of the control yogurt. In addition, the growths of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, and Enterobacter sakazakii were inhibited during fermentation and storage. These results suggest that GME could be used in dairy products as a supplement and in the food industry as an antimicrobial material.

Flavor and Volatile Compounds of Soy Yogurt (대두요구르트의 향미(香味)와 휘발성분(揮發成分))

  • Lee, Jung-Sook;Kim, Young-Bae;Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.51-53
    • /
    • 1985
  • Soy milks prepared from full-fat soy flour, defatted soy flow, soy protein concentrate (SPC) and soy protein isolate (SPI) were fermented with Lactobacillus acidophilus. Effects of lactic fermentation on the flavor and volatile compounds of soy milks were investigated. Sensory evaluation showed that the flavor of soy yogurt beverages was inferior to that of milk yogurt beverage and the flavor of SPI-yogurt beverage was better than that of other soy yogurt beverages. SPI-milk fermented with L. acidophilus was more acceptable than unfermented SPI-milk. Lactic fermentation reduced n-hexanal in SPC-milk and SPI-milk while it increased diacetyl in both soy milks.

  • PDF

Dental Caries Suppression Effect and Other Physiological Properties of Erythritol (에리스리톨의 난충치성 및 기타 생리 특성)

  • Byun, Sang-Hee;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.446-449
    • /
    • 1998
  • Dental caries suppression effect and other physiological properties of erythritol were measured in comparison with those of sucrose, xylitol and sorbitol. The susceptibility test for dental caries by using Streptococcus mutans KCTC 3065 and Lactobacillus acidophillus indicated that erythritol was as effective as xylitol in suppressing dental caries. In lactic acid fermentation test, erythritol showed the least growth of bacteria among the tested sweeteners. The tolelerance test by using mice showed that diarrhea began by feeding once 1500 mg erythritol/kg b.w., 1500 mg xylitol/kg b.w. and 1000 mg sorbitol/kg b.w. respectively.

  • PDF

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP;BREIDT FRED;FLEMING H. P.;SHIN WON-CHEOL;YOON SUNG-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

Antiallergic Effects of Fermented Ixeris sonchifolia and Its Constituents in Mice

  • Trinh, Hien-Trung;Bae, Eun-Ah;Hyun, Yang-Jin;Jang, Yoon-Ah;Yun, Hyung-Kwon;Hong, Seong-Sig;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.217-223
    • /
    • 2010
  • To evaluate the antiallergic effect of fermented Ixeris sonchifolia (IS, family Compositae), we prepared IS kimchi, isolated lactic acid bacteria (LAB) from it, fermented IS with these LAB, and investigated their antiallergic effects. IS kimchi inhibited the passive cutaneous anaphylaxis (PCA) reaction induced by an IgE-antigen complex as well as the scratching behavior induced by compound 48/80 or histamine more potently than IS. When IS was fermented with LAB isolated from IS kimchi, its antiallergic effects was also increased. Of LAB used for fermentation, Lactobacillus brevis more potently increased the antiallergic effects. Its main constituents, chlorogenic acid and luteolin, potently inhibited the PCA reaction induced by the IgE-antigen complex as well as the pruritis induced by compound 48/80 or histamine. These constituents inhibited the expression of pro inflammatory and allergic cytokines, TNF-$\alpha$. and IL-4, and transcription factor NF-${\kappa}B$ activation induced by the IgE-antigen complex in RBL-2H3 cells, as well as the degranulation of RBL-2H3 cells induced by the IgE-antigen complex. Luteolin more potently inhibited these allergic reactions than chlorogenic acid. These findings suggest that the antiallergic effect of IS can be increased by LAB fermentation, and the fermented IS might improve allergic reactions such as pruritus, anaphylaxis, and inflammation.

PCR-DGGE Analysis of the Microbial Communities in Three Different Chinese "Baiyunbian" Liquor Fermentation Starters

  • Xiong, Xiaomao;Hu, Yuanliang;Yan, Nanfeng;Huang, Yingna;Peng, Nan;Liang, Yunxiang;Zhao, Shumiao
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1088-1095
    • /
    • 2014
  • A systematic investigation was performed on the bacterial, Bacillus, fungal, and yeast communities of the three types of Daqu (mechanically prepared, manually prepared, and mixed prepared) used in Baiyunbian Company by reconditioning PCR-denaturing gradient gel electrophoresis (PCR-DGGE). The DGGE results showed that the microbes in the three types of Daqu were mainly thermotolerant and thermophilic microbes, and the most dominant bacterial species were Bacillus and Virgibacillus, followed by Lactobacillus and Trichococcus. Furthermore, the dominant fungi were found to be molds, such as Rasamsonia, Penicillium, Aspergillus, and Monascus, and the dominant yeasts were Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Pichia anomala, and Debaryomyces hansenii. In general, the three types of Daqu showed slight differences in microbial communities, and the Shannon indexes (H') of the manually prepared and mechanically prepared Daqu were similar. The results suggest that mechanically prepared Daqu can replace manually prepared Daqu in liquor production, and this research provides useful information for liquor production and process improvement.

Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance

  • Ahmadsah, Lenny S. F.;Min, Sung-Gi;Han, Seon-Kyeong;Hong, Yeun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2049-2057
    • /
    • 2015
  • Various salt concentrations (1.0%, 1.3%, 1.6%, 1.9%, and 2.1% labeled as sample A, B, C, D, and E, respectively) were investigated for microbial diversity, identification of Lactic Acid Bacteria (LAB) in salted kimchi cabbage, prepared under laboratory conditions. These samples were stored at 4°C for 5 weeks in proper aluminum-metalized pouch packaging with calcium hydroxide gas absorber. A culture-independent method known as polymerase chain reaction - denaturing gradient gel electrophoresis was carried out to identify LAB distributions among various salt concentration samples that had identified 2 Weissella (W. confusa and W. soli), 1 Lactobacillus (Lb. sakei), and 3 Leuconostoc (Lc. mesenteroides, Lc. lactis, and Lc. gelidum) in the overall kimchi samples. The pH, titratable acidity, viable cell counts, and coliform counts were not affected by salt variations. In order to assess sensory acceptance, the conducted sensory evaluation using a 9-point hedonic scale had revealed that samples with 1.3% salt concentration (lower than the manufacturer's regular salt concentration) was more preferred, indicating that the use of 1.3% salt concentration was acceptable in normal kimchi fermentation for its quality and safety. Despite similarities in pH, titratable acidity, viable cell counts, coliform counts, and LAB distributions among the various salt concentrations of kimchi samples, the sample with 1.3% salt concentration was shown to be the most preferred, indicating that this salt concentration was suitable in kimchi production in order to reduce salt intake through kimchi consumptions.

The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt

  • Lin, Jinzhong;Hua, Baozhen;Xu, Zhiping;Li, Sha;Ma, Chengjie
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.558-565
    • /
    • 2016
  • The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth.

Physicochemical and microbial characteristics of domestic commercial semi solid type yogurt

  • Choi, Hye Sun;Park, Hye Young;Lee, Seuk Ki;Park, Ji Young;Joe, Dong Hwa;Oh, Sea Kwan;Lee, Ji Hyen;Won, Ju In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.365-365
    • /
    • 2017
  • Yogurt is a food produced by bacterial fermentation of milk and the bacteria used to make it are known as "yogurt cultures". Most of them belong to probiotics such as Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus bacteria. Domestic fermented milk market is increasing and about 30 companies are producing yogurt. The purpose of this study was to analyze the quality characteristics of domestic commercial semisolid type yogurt. We collected 20 types of commercial yogurt at local markets. Physicochemical properties including pH, sugar content, acidity, viscosity and microbial characteristics of lactic acid bacteria counts were measured. The yogurt showed pH 4.5, 7.4~18.1% of sugar contents, 0.6~1.3% of total acids and 282~748 cP of viscosities. In the microorganism populations, lactic acid bacteria count were 6.5~11.5 Log CFU/mL and anaerobic lactic acid bacteria count were 7.2 ~ 11.1 Log CFU/mL. The quality characteristics were different depending on the constituents of the sample and the microorganisms used. These results are related to the quality characteristics of yogurts which are useful information about identifying new trends in domestic fermented milk industry.

  • PDF