Browse > Article

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses  

CHIN HWA SUP (Department of Biological Resources and Technology, Yonsei University)
BREIDT FRED (Department of Food Science, North Carolina State University)
FLEMING H. P. (Department of Food Science, North Carolina State University)
SHIN WON-CHEOL (Kangwon National University)
YOON SUNG-SIK (Institute of Functional Biomaterials and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.1, 2006 , pp. 68-76 More about this Journal
Abstract
Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.
Keywords
Kimchi; lactic acid bacteria; ITS-PCR; 16S rDNA; predominant; identification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
1 Jensen, M. A., J. A. Webster, and N. Straus. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59: 945-952
2 Kim, J., J. Chun, and H.-U. Han. 2000. Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50: 1915-1919   DOI
3 Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635-642
4 Medina, M., A. G. Collins, J. D. Silberman, and M. L. Sogin. 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc. Natl. Acad. Sci. USA 98: 9707-9712
5 Moschetti, G., G. Blaiotta, F. Villani, and S. Coppla. 2000. Specific detection of Leuc. mesenteroides subsp. mesenteroides with DNA primers identified by randomly amplified polymorphic DNA analysis. Appl. Environ. Microbiol. 66: 422- 424   DOI
6 Yimin, C., S. Kumai, M. Ogawa, Y. Benno, and T. Nakase. 1999. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Appl. Environ. Microbiol. 65: 2901- 2906
7 Lee, J.-S., G.-Y. Heo, J. W. Lee, Y.-J. Oh, J. A. Park, Y.-H. Park, Y.-R. Park, and J.-S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150   DOI   ScienceOn
8 Ku, Y. J. and S. Y. Choi. 1991. In: 'Science and Technologies of Kimchi', Changjo Co, Seoul. pp. 140-141
9 Roggrigues, U. M., M. Aguirre, R. R. Facklammand, and M. D. Collins. 1991. Specific and intraspecific molecular typing of Lactococci based on polymorphism of DNA encoding rRNA. J. Appl. Bacteriol. 88: 260-265
10 Breidt, F. and H. P. Fleming. 1996. Identification of lactic acid bacteria by ribotyping. J. Rapid Meth. Auto. Microbiol. 4: 219-233   DOI   ScienceOn
11 Felsenstein, J. 1992. Estimating effective population size from samples of sequences: A bootstrap Monte Carlo integration method. Genet Res. 60: 209-220   DOI   ScienceOn
12 Chiegh, H. S. and K. Y. Kwon. 1994. Biochemical, microbiological and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34: 175-203   DOI   ScienceOn
13 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410   DOI
14 Jang, J. C., B. Kim, J. Lee, J. Kim, G. Jeong, and H. Han. 2002. Identification of Weissella species by genus-specific amplified ribosomal DNA restriction analysis. FEMS Microbiol. Lett. 212: 29-34   DOI
15 Johansson, M. L., M. Quednau, G. Molin, and S. Agrne. 1995. Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett. Appl. Microbiol. 21: 155-159   DOI   ScienceOn
16 Choi, H. J., Y. J. Shin, J. H. Yu, and S. S. Yoon. 1996. A new selective medium for the isolation and the detection of leuconostocs in foodstuffs. Kor. J. Food Sci. Technol. 28: 279-284   과학기술학회마을
17 Choi, I.-K., S.-H. Jung, A.-Y. Park, J. Kim, and H.-U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie van Leeuwenhoek. 84: 247-253   DOI
18 Cocconeil, P. S., D. Porro, S. Galandini, and L. Senini. 1995. Development of RAPD protocol for typing of strain of lactic acid bacteria and Enterococci. Lett. Appl. Microbiol. 21: 376-379   DOI   ScienceOn
19 Kullen, M. J., R. B. Sanosky-Dawes, D. C. Crowell, and T. R. Klaenhammer. 2000. Use of DNA sequence of variable region of the 16sRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appl. Microbiol. 89: 511-518   DOI   ScienceOn
20 Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organism from fermented sausage; description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603   DOI   ScienceOn
21 Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Acid. Res. 18: 6531-6535   DOI
22 Chin, H.-S., J. S. Shim, J.-M. Kim, R. Yang, and S.-S. Yoon. 2001. Detection and antibacterial activity of a bacteriocin produced by Lactobacillus plantarum. Food Sci. Biotechnol. 10: 461-467
23 Vandamme, P., B. Pot, M. Gillis, W. de Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407- 438
24 Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentrations on kimchi fermentation. Kor. J. Food Sci. Technol. 16: 433-440
25 Schloter, M., M. Lebuhn, T. Heulin, and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity. FEMS Micrbiol. Rev. 24: 647-660   DOI
26 Stephan, R. 1996. Randomly amplified polymorphic DNA (RAPD) assay for genomic fingerprinting of Bacillus cereus isolates. Int. J. Food Microbiol. 31: 311-316   DOI   ScienceOn
27 Schleifer, K. H., M. Ehrmann, C. Beimfohr, E. Brockmann, W. Ludwig, and R. Amann. 1995. Application of molecular method for the classification and identification of lactic acid bacteria. Int. Dairy J. 5: 1081-1094   DOI   ScienceOn
28 Park, K. K., J. R. Lim, and H. E. Han. 1990. Bacterial transition of fermenting kimchi at different temperature. Bulletin of Basic Science, Inha University, Incheon, S. Korea. 11: 161-169
29 Han, H., J. R. Lim, and H. K. Park. 1990. Determination of microbial community as an indicator of kimchi fermentation. Kor. J. Food Sci. Technol. 22: 26-32   과학기술학회마을
30 Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microbial changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Bioeng. 20: 102-109
31 Sneath, P. H. A., N. S. Mair, M. E. Sharp, and J. G. Holt. 1986. pp. 1071-1075. In: Bergey's Manual of Systematic Bacteriology, vol 2, Williams & Wilkins, N.Y