Browse > Article
http://dx.doi.org/10.5851/kosfa.2016.36.4.558

The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt  

Lin, Jinzhong (State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd.)
Hua, Baozhen (State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd.)
Xu, Zhiping (State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd.)
Li, Sha (State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd.)
Ma, Chengjie (State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd.)
Publication Information
Food Science of Animal Resources / v.36, no.4, 2016 , pp. 558-565 More about this Journal
Abstract
The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth.
Keywords
yoghurt; proteolytic pork hydrolysate; viable cell count; flavor compound; free amino acids compound;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cheng, H. F. (2010) Volatile flavor compounds in yogurt: A review. Food Sci. Nutr. 50, 938-950.
2 Abreu, I. A. and Cabelli, D. E. (2010) Superoxide dismutases-A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 1804, 263-274.   DOI
3 Al-Attabi, Z., D’Arcy, B. R., and Deeth, H. C. (2014) Volatile sulfur compounds in pasteurised and UHT milk during storage. Dairy Sci. Technol. 94, 241-253.   DOI
4 Ashraf, R. and Shah, N. P. (2011) Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. Int. J. Food Microbiol. 149, 194-208.   DOI
5 Aubes-Dafau, I., Capdevielle, J., Seris, J. L., and Combes, D. (1995) Bitter peptide from hemoglobin hydrolysate: Isolation and characterization. FEBS Lett. 364, 115-119.   DOI
6 Chaves, A. C. S. D., Fernandez, M., Lerayer, A. L. S., Mierau, I., Kleerebezem, M., and Hugenholtz, J. (2002) Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 68, 5656-5662.   DOI
7 Cruz, A. G., Castro, W. F., Faria, J. A. F., Lollo, P. C. B., Amaya-Farfan, J., Freitas, M. Q., Rodrigues, D., Oliveira, C. A. F., and Godoy, H. T. (2012) Probiotic yogurts manufactured with increased glucose oxidase level: Postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. J. Dairy Sci. 95, 2261-2269.   DOI
8 Donkor, O.N., Henriksson, A., Vasiljevic, T., and Shah, N. P. (2006) Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int. Dairy J. 16, 1181-1189.   DOI
9 Fayed, A. E. (2015) Health benefits of some physiologically active ingredients and their suitability as yoghurt fortifiers. J. Food Sci. Technol. 52, 2512-2521.   DOI
10 Gentili, A. and Caretti, F. (2013) Chapter 18 - Analysis of Vitamins by Liquid Chromatography. In: Liquid Chromatography. Elsevier, Amsterdam, pp. 477-517.
11 Liepke, C., Adermann, K., Raida, M., Magert, H. J., Forssmann, W. G., and Zucht, H. D. (2003) Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur. J. Biochem. 269, 712-718.
12 Hervert-Hernández, D., Pintado, C., Rotger, R., and Goñi, I. (2009) Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int. J. Food Microbiol. 136, 119-122.   DOI
13 Irmler, S., Raboud, S., Beisert, B., Rauhut, D., and Berthoud, H. (2008) Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase. Appl. Environ. Microbiol. 74, 99-106.   DOI
14 Jon, C. V. L. (1980) Determination of metal compounds. In: Analytical Atomic Absorption Spectroscopy. Academic Press, NY, pp. 295-311.
15 Lucey, J. A. (2004) Cultured dairy products: An overview of their gelation and texture properties. Int. J. Dairy Technol. Res. 20, 23-29.
16 Masuda, M., Ide, M., Utsumi, H., Niiro, T., Shimamura, Y., and Murata, M. (2012) Production potency of folate, vitamin B (12), and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci. Biotechnol. Biochem. 76, 2061-2067.   DOI
17 Molimard, P. and Spinnler, H. E. (1996) Compound involved in the flavor of surface mold-ripend cheeses: Origins and properties. J. Dairy Sci. 79, 169-184.   DOI
18 Murphy, K. J., Thomson, R. L., Coates, A. M., Buckley, J. D., and Howe, P. R. C. (2012) Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients 4, 711-723.   DOI
19 Murphy, M. M., Spungen, J. H., Bi, X. Y., and Barraj, L. M. (2011) Fresh and fresh lean pork are substantial sources of key nutrients when these products are consumes by adults in the United States. Nutr. Res. 31, 776-783.   DOI
20 Serra, M., Trujillo, A. J., Guamis, B., and Ferragut, V. (2009) Proteolysis of yogurts made from ultra-high-pressure homogenized milk during cold storage. J. Dairy Sci. 92, 71-78.   DOI
21 Najgebauer-Lejko, D. (2014) Effect of green tea supplementation on the microbiological, antioxidant, and sensory properties of probiotic milks. Dairy Sci. Technol. 94, 327-339.   DOI
22 Nolan-Clark, D. J., Neale, E. P., and Charlton, K. E. (2013) Processed pork is the most frequently consumed type of pork in a survey of Australian children. Nutr. Res. 33, 913-921.   DOI
23 Reig, M., Aristoy, M. C., and Toldra, F. (2013) Variability in the contents of pork meat nutrients and how it may affect food composition databases. Food Chem. 140, 478-482.   DOI
24 Settachaimongkon, S., Robert, N. M. J., Antunes, F. E. C., Hettinga, K. A., Vervoort, J. M., van Hooijdonk, T. C. M., Zwietering, M. H., Smid, E. J., and van Valenberg, H. J. F. (2014) Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 177, 29-36.   DOI
25 Shah, N. P., Ding, W. K., Fallourd, M. J., and Leyer, G. (2010) Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. J. Food Sci. 75, M278-M282.
26 Simova, E., Simov, Z., Beshkova, D., Frengova, G., Dimitrov, Z., and Spasov, Z. (2006) Amino acids profiles of lactic acid bacteria, isolated form kefir grains and kefir starter made from them. Int. J. Food Microbiol. 107, 112-123.   DOI
27 Smith, J. S., Hillier, A. J., and Lees, G. J. (1975) The nature of the stimulation of the growth of Streptococcus lacits by yeast extract. J. Dairy Res. 42, 123-128.   DOI
28 Tzong-Hsien, L. and Marie-Isabel, A. (2008) High performance liquid chromatography (HPLC) of peptides and proteins. In: Molecular Biomethods Handbook. Humana Press, NY, pp. 767-792.
29 Talwalkar, A. and Kailasapathy, K. (2003) Metabolic and biochemical responses of probiotics bacteria in oxygen. J. Dairy Sci. 86, 2537-2546.   DOI
30 Tamura, M., Mori, N., Miyoshi, T., Koyama, S., Kohri, H., and Okai, H. (1990) Practical debittering using model peptides and related compounds. Agric. Biol. Chem. 54, 41-51.
31 Toit, M., Engelbrecht, L., Lerm, E., and Krieger-Weber, S. (2011) Lactobacillus: the next generation of malolactic fermentation starter cultures-an overview. Food Bioprocess Technol. 4, 876-906.   DOI
32 Ye, M., Liu, D., Zhang, R., Yang, L., and Wang, J. (2012) Effect of hawk tea (Litsea coreana L.) on the numbers of lactic acid bacteria and flavour compounds of yoghurt. Int. Dairy J. 23, 68-71.   DOI
33 Zare, F., Boye, J. I., Orsat, V., Champagne, C., and Simpson, B. K. (2011) Microbial, physical and sensory properties of yoghurt supplemented with lentil flour. Food Res. Int. 44, 2482-2488.   DOI
34 Zhang, J. H., Li, Z. M., Kong, F. T., Dong, X. X., Chen, W., and Wang, S. W. (2014) Prediction of pork prices based on SVM. Proceeding of 2013 World Agricultural Outlook Conference, Beijing, China, pp. 173-178.