• 제목/요약/키워드: Lactate dehydrogenase assay(LDH)

검색결과 106건 처리시간 0.03초

The Effect of Chrysanthemum morifolium L. Extract on Cultured Neuroglial Cells Damaged by Glucose Oxidase

  • Seo, Young-Mi;Park, Seung-Taeck;Rim, Yo-Sup;Chung, Ok-Bong;Jekal, Seung-Joo
    • 대한임상검사과학회지
    • /
    • 제43권2호
    • /
    • pp.75-81
    • /
    • 2011
  • To clarify the oxidative stress of reactive oxygen species (ROS) and the effect of Chrysanthemum morifolium L. (CM) flower extract on the cultured neuroglial cells (C6 glioma) damaged by ROS, cell adhesion effect was measured by colorimetric assay after cultured C6 glioma cells were treated with various concentrations of glucose oxidase (GO) for 5 hours. For the antioxidative effect of CM flower extract, cell adhesion activity (CAA), superoxide dismutase (SOD)-like activity and lactate dehydrogenase (LDH) activity were assessed against GO-induced cytotoxicity on same cultures. In this study, GO remarkably decreased CAA dose-dependently, and the $XTT_{90}$ and $XTT_{50}$ values were measured at 15 mU/mL and 50 mU/mL following the treatment of C6 glioma cells with 5~60 mU/mL of GO. The CM flower extract significantly increased cell adhesion activity damaged by GO-induced cytotoxicity, and it also showed the SOD-like activity and the decrease of LDH activity. From these results, it is suggested that GO was cytotoxic on cultured C6 glioma cells, and CM flower extract showed antioxidative effects as shown by the increased CAA, SOD-like activity and the decrease of LDH activity on GO-induced cytotoxicity on the same cultures.

  • PDF

랫드 간세포 일차배양에서 Benzo[a]pyrene의 산화 효과 (The Oxidative Effects of Benzo[a]pyrene in Rat Hepatocyte Primary Culture)

  • 임태진
    • 한국환경과학회지
    • /
    • 제13권4호
    • /
    • pp.413-420
    • /
    • 2004
  • The objectives of present study were to investigate the effects of benzo[a]pyrene(BaP) on cytotoxicity, lipid peroxidation and antioxidant enzymes in rat hepatocyte primary culture. Primary cultures of rat hepatocytes were incubated for 24 hr, 48 hr or 72 hr in the presence of various concentrations (0, 10, 20, 30, 50 or 100 $\mu.$ M) of BaP. Cytotoxicity and cell viability were determined by measuring glutamic oxaloacetic transaminase(GOT) activity, lactate dehydrogenase(LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MIT) value. Lipid peroxidation was evaluated using thiobarbituric acid reactive substances(TBARS) assay. Effects on antioxidant system were determined by measuring glutathione peroxidase(GPx) activity, glutathione reductase(GR) activity and glutathione concentration. Activities of GOT and LDH, MTT value as well as TBARS concentration were not affected by up to 100 $\muM$ of BaP for 24 hr incubation. However, BaP at the concentration of 50 $\muM$ for 48 hr incubation or at the concentration of 30 $\muM$ for 72 hr incubation began to increase LDH activity and TBARS concentration but decrease MTT value, representing that BaP caused cytotoxicity and decreased cell viability in dose- and time-dependent manners. GPx activity began to be decreased by BaP at the concentration of 50 $\muM$ for 72 hr incubation. Whereas, GR activity began to be decreased by BaP at the concentration of 20 $\muM$ for 72 hr incubation. Glutathione concentration began to be decreased by BaP at the concentration of 20 $\muM$ for 72 hr incubation and was further reduced to 90% by 100 $\muM$ of BaP. These results demonstrate that BaP caused cytoctoxicity and decreased cell viability by increasing lipid peroxidation and decreasing glutathione concentration as well as activities of GPx and GR.

Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells

  • Yoon, Hoon Seok;Lee, Nam-Ho;Hyun, Chang-Gu;Shin, Dong-Bum
    • Preventive Nutrition and Food Science
    • /
    • 제20권1호
    • /
    • pp.73-77
    • /
    • 2015
  • As an approach to search for chemopreventive agents, we tested p-coumaric acid, 3-methoxy-p-coumaric acid (ferulic acid), and 3,5-dimethoxy-p-coumaric acid (sinapic acid) in B16/F10 melanoma cells. Intracellular melanin contents were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and cytotoxicity of the compounds were examined by lactate dehydrogenase (LDH) release. p-Coumaric acid showed inhibitory effect on melanogenesis, but ferulic acid increased melanin content, and sinapic acid had almost no effect on melanogenesis. Treatment with ferulic acid resulted in a 2 to 3 fold elevation in the production of melanin. Correlatively, cell viability decreased in a dose-dependent manner when treated with ferulic acid. However, ferulic acid did not affect the LDH release from the cells. Treatment with sinapic acid resulted in a 50~60% elevation in the release of LDH when treated with a $200{\mu}g/mL$ concentration and showed neither cytostasis nor increase of melanin synthesis in a dose-dependent manner. Taken together, p-coumaric acid inhibits melanogenesis, ferulic acid induces melanogenesis, and sinapic acid exerts cytotoxic effects in B16/F10 murine melanoma cells. The results indicate that the addition of methoxy groups to p-coumaric acid shows the melanogenic or cytotoxic effects in melanoma cells compared to the original compound. Therefore, this study suggests the possibility that methoxylated p-coumaric acid, ferulic acid can be used as a chemopreventive agent.

Acute Pulmonary Responses in Vivo to Silica Complexed with $H^+$, $Zn^{2+}$, or $Fe^{3+}$

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.183-189
    • /
    • 1999
  • This investigation is to determine whether the surface complexation of iron influence acute pulmonary responses induced by silica. For this study, three varieties of cation complexed silica were used: $silica-H^+,\;-Zn^{2+},\;and\;-Fe^{3+},$ since the first two are not active in the transport of electrons and generate little free radicals relative to the dust with the surface iron. Rats (270 to 280 g) were intratracheally (IT) instilled with saline, $silica-H^+,\;-Zn^{2+},\;or\;-Fe^{3+}$(5 mg in 0.5 ml saline). After 4 h, cell number, type, and differentiation were analysed in the bronchoalveolar lavage cells, and the levels of lactate dehydrogenase (LDH) and total protein were determined in the lavage fluid. In addition, bronchoalveolar lavage cells were cultured, and nitric oxide production was measured using nitrate assay. Inducible nitric oxide synthase (iNOS) mRNA in the bronchoalveolar lavage cells was also determined by northern blot analysis. Differential counts of the lavage cells showed that red blood cells were increased by 9-, 8-, and 13-fold and total leukocytes (lymphocytes plus polymorphonuclear neutrophils) by 48-, 36-, and 33-fold, following IT $silica-H^+,\;-Zn^{2+},\;and\;-Fe^{3+},$ respectively compared with the saline group. Meanwhile, there were no significant differences in red blood cells and total leukocytes among any of the cation complexed silica groups. The levels of LDH and total protein in the lavage fluid were significantly increased by 3- to 4-fold. However, compared among these silica groups, $Fe^{3+}$? complexation did not significantly change the LDH activity and total protein. NO production in cultured bronchoalveolar lavage cells was elevated by 2-fold, following IT any of the silica treatments compared with the saline group. Furthermore, the steady-state levels of iNOS mRNA in the lavage cells were greatly increased. There were any differences in iNOS mRNA expression among the silica-treated groups as with NO production. These findings suggest that surface complexed iron may not influence the acute pulmonary responses resulted from 4h exposure to silica.

  • PDF

고삼(苦蔘) 전탕액(煎湯液)이 배양심근세포(培養心筋細胞)에 미치는 영향(影響) (Effects of Sophorae Radix Water Extract on Cultured Rat Myocardial Cells)

  • 김현규;박준수;권강범;이호섭;한종현;박승택;류도곤
    • 대한한의학회지
    • /
    • 제20권1호
    • /
    • pp.142-150
    • /
    • 1999
  • In order to elucidate toxic the mechanism of myocardial damage and the protective effect of herbal extract, Sophorae Radix(SR) against myocardiotoxicity, the cytotoxic effect of adriamycin and cardioprotective effect of SR were examined by MTT assay, LDH activity, heart beat rate and light microscopy after cultured myocardial cells derived from neonatal mouse were treated with various concentrations of adriamycin, an inducer of myocardiotoxicity. Adriamycin induced a decrease of cell viability, an increase in the amount of lactate dehydrogenase(LDH), and a decrease in the heart beat rate and a decrease in the number of cells, when administered to cultures myocardial cells in a dose-dependent manner. In cardioprotective effect of SR. SR showed the decrease of amount of LDH, and an increase of heart beating rate and cells in number on cultured myocardial cells damaged by adriamycin. From the above results, it is suggested that adriamycin shows toxic effect in cultured myocardial cells derived from a neonatal mouse, and herbal extract such as SR is very effective in the prevention of adriamycin-induced cardiotoxicity.

  • PDF

Glutamate에 의한 산화적 스트레스로부터 신경세포를 보호하는 제비꽃 추출물의 영향 (Protective Effect of Neuronal Cell on Glutamate-induced Oxidative Stress from Viola mandshurica Extracts)

  • 이미라;한창석;한동열;박은주;이승철;박해룡
    • Applied Biological Chemistry
    • /
    • 제51권1호
    • /
    • pp.79-83
    • /
    • 2008
  • 본 연구에서는 신경독소일 뿐만 아니라 흥분성 신경전달물질로 잘 알려져 있는 glutamate 세포독성이 산화적 손상과 관련하고 있고, 여기에 방어효과를 보이는 제비꽃 추출물에 관하여 연구하였다. MTT reduction assay를 통하여 glutamate의 세포독성을 확인하였고 ascorbic acid와 같은 대표적인 항산화제를 처리한 후 광학 현미경을 이용한 형태학적 변화를 관찰하였다. N18-RE-105 세포주에 최종 농도 20mM의 glutamate를 처리 하면 40.8% 의 생존율을 보이는데 반하여 ascorbic acid 500 ${\mu}M$ 최종농도로 처리하였을 때 85.3%의 세포 생존율을 확인할 수 있었다. 그리고 신경세포 보호효과를 가지는 제비꽃을 methanol, ethanol, acetone 추출한 뒤 MTT reduction assay를 이용하여 활성을 확인하였으며 그 중 acetone 추출물을 최종농도 50, 100 ${\mu}g/ml$를 처리 시 76.8%, 79.4%로 가장 높은 세포 생존율을 확인할 수 있었다. 이 결과는 N18-RE-105 세포주의 형태학적 변화와 LDH release assey에서도 일치하는 결과를 확인하였다.

In vitro system에서 오미자 메탄올 추출물의 항산화 및 신경세포 보호효과 (Antioxidant and Neuronal Cell Protective Effects of Methanol Extract from Schizandra chinensis using an in vitro System)

  • 김지혜;정창호;최귀남;곽지현;최성길;허호진
    • 한국식품과학회지
    • /
    • 제41권6호
    • /
    • pp.712-716
    • /
    • 2009
  • 오미자 메탄올 추출물의 항산화 특성 및 $H_2O_2$로 유도된 신경세포 독성에 대한 보호효과를 조사하였다. ABTS radical 소거 및 FRAP방법을 이용하여 오미자 메탄올 추출물의 항산화 활성을 측정한 결과 추출물의 농도가 증가함에 따라 항산화 활성이 증가하는 농도의존적인 경향을 보였다. $H_2O_2$로 유도된 PC12 신경세포에 대한 보호효과를 측정한 결과 모든 시료에서 72-99% 정도의 신경세포 보호효과를 보였고, LDH release assay 결과 0.5 mg/mL 농도에서 47% 정도의 LDH 방출량 저해효과를 나타냈으며, neutral red uptake assay 결과 모든 농도에서 vitmain C에 비해 높은 생존율을 보였다. 본 연구 결과를 종합해 볼 때, 오미자 메탄올 추출물의 항산화력과 산화적 스트레스로부터 신경세포의 뛰어난 보호효과는 알츠하이머성 신경질환의 예방 및 치료제로서의 활용 가능성이 높다고 판단된다.

대조환이 대뇌신경세포의 허혈성 손상에 미치는 영향 (Effects of Daejo-whan on the Ischemic Damage of Cerebral Neurons in Culture)

  • 박세홍;이광로;배선준;정상수;강세영;이상관;이성근;윤지원;성강경
    • 동의생리병리학회지
    • /
    • 제17권6호
    • /
    • pp.1500-1508
    • /
    • 2003
  • This study was performed to clarify the neurotoxic mechanism of nerve cells damage by brain ischemia. The cytotoxic effect of ischemia was determined by XTT assay, NR assay, superoxide dismutase(SOD) activity, amount of malondialdehyde(MDA), lactate dehydrogenase(LDH) activity, protein synthesis and tumor necrosis factor(TNF)-α activities after cerebral neurons derived from mouse were exposed to ischemia for 1∼30 minutes. In addition, the protective effect of extract of Daejo-whan(DJW) on ischemia-induced neurotoxicity was examined in these cultures. 1. Ischemia decreased cell number and viability by XTT assay or NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 1∼20 minutes in these cultures. 2. Ischemia decreased SOD and protein syntheses, but it increased amount of MDA and, LDH and TNF-α activities in these cultures. 3. In the neuroprotective effect of DJW extracts on cerebral neurons damaged by ischemia, DJW extracts increased SOD activity and protein synthesis. While, it decreased amount of MDA and, LDH and TNF-α activities after cerebral neurons preincubated with herb extracts. It suggests that brain ischemia has neurotoxicity on cultured mouse cerebral neurons, and the herb extract such as DJW was very effective in blocking the neurotoxicity induced by ischemia in cultured mouse cerebral neurons.

Hydrogen peroxide가 유도하는 세포독성으로부터 PC12 세포를 보호하는 하고초(Prunella spica) 추출물의 영향 (Protective Effect of Prunella spica Extracts against H2O2-Induced Cytotoxicity in PC12 Cells)

  • 김현정;이정민;문성희;박해룡
    • 생명과학회지
    • /
    • 제20권7호
    • /
    • pp.1121-1126
    • /
    • 2010
  • 활성산소에 의해 유도되는 산화적 스트레스가 노화와 관련된 각종 퇴행성 신경질환의 원인으로 밝혀짐에 따라 본 연구에서는 활성산소종인 $H_2O_2$가 유도하는 강력한 산화적 스트레스로부터 신경세포를 보호하는 물질을 탐색하기 위하여 하고초 추출물(PSE)에 관하여 연구하였다. PC12 세포를 이용하여 MTT reduction assay, LDH release assay 및 colony formation assay 등 여러 가지 생물학적인 assay를 통하여 PSE의 세포 보호효과를 확인하였다. 그리고 광학 현미경을 이용한 형태학적 변화 관찰에서도 $H_2O_2$ 처리군에 비해 높은 세포 보호효과를 확인할 수 있었으며, Hoechst 33342 염색과 세포주기 분석을 통하여 PSE의 높은 apoptosis 억제효과를 확인할 수 있었다. 이상의 결과로부터 하고초는 $H_2O_2$에 의해 유도된 세포독성으로부터 PC12 세포손상을 강력하게 억제하는 효과가 있다는 것을 확인할 수 있었으며, 퇴행성 신경질환에 대한 새로운 치료제로서의 가능성을 제시하였다.

제비꽃(Viola mandshurica) 추출물로부터 분리된 9-hydroxy-$\alpha$-tocopherone의 항산화 활성 및 세포 보호효과 (Antioxidant Activity and Protective Effects of 9-hydroxy-$\alpha$-tocopherone from Viola mandshurica Extracts)

  • 이미라;황지환;박재희;김현정;박은주;박해룡
    • 생약학회지
    • /
    • 제41권3호
    • /
    • pp.166-173
    • /
    • 2010
  • Oxidative stress to proteins, lipids, or DNA is higher in human autopsy tissue and in rodent models of a number of neurodegenerative conditions, including Alzheimer's and Parkinson's disease. On the basis of this information, we established a screening system using N18-RE-105 cells to identify therapeutic agents that can protect cells from glutamate toxicity. During the course of our screening program, we recently isolated the active compound 9-hydroxy-$\alpha$-tocopherone ($\alpha$-TP), which prevents glutamate-induced cell death, from Viola mandshurica. The chemical structure of $\alpha$-TP was identified using spectroscopic methods and by comparison with literature values. Antioxidant activity and protective effects of $\alpha$-TP were evaluated by DPPH radical-scavenging assay, morphological assay, MTT reduction assay, and lactate dehydrogenase (LDH) release assay. These results suggest that $\alpha$-TP could be a new potential chemotherapeutic agent against neuronal diseases.