• 제목/요약/키워드: LXR

검색결과 40건 처리시간 0.02초

27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms

  • Kim, Bo-Young;Son, Yonghae;Cho, Hyok-rae;Lee, Dongjun;Eo, Seong-Kug;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.111-118
    • /
    • 2021
  • 27-Hydroxycholesterol (27OHChol) exhibits agonistic activity for liver X receptors (LXRs). To determine roles of the LXR agonistic activity in macrophage gene expression, we investigated the effects of LXR inhibition on the 27OHChol-induced genes. Treatment of human THP-1 cells with GSK 2033, a potent cell-active LXR antagonist, results in complete inhibition in the transcription of LXR target genes (such as LXRα and ABCA1) induced by 27OHChol or a synthetic LXR ligand TO 901317. Whereas expression of CCL2 and CCL4 remains unaffected by GSK 2033, TNF-α expression is further induced and 27OHChol-induced CCL3 and CXCL8 genes are suppressed at both the transcriptional and protein translation levels in the presence of GSK 2033. This LXR antagonist downregulates transcript levels and surface expression of CD163 and CD206 and suppresses the transcription of CD14, CD80, and CD86 genes without downregulating their surface levels. GSK 2033 alone had no effect on the basal expression levels of the aforementioned genes. Collectively, these results indicate that LXR inhibition leads to differential regulation of 27-hydroxycholesterol-induced genes in macrophages. We propose that 27OHChol induces gene expression and modulates macrophage functions via LXR-dependent and -independent mechanisms.

TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes

  • Choi, Ho-Jung;Kim, Eung-Seok
    • 한국축산식품학회지
    • /
    • 제31권3호
    • /
    • pp.398-404
    • /
    • 2011
  • TR4 has been suggested to play an important role in lipid metabolism in adipocytes. Although TR4 facilitates lipid accumulation during adipogenesis, the regulatory effect of TR4 on lipid storage in mature adipocytes remains unclear. We showed that TR4 inhibited the LXR agonist GW3965-mediated decrease of lipid accumulation in 3T3-L1 adipocytes. A reporter gene analysis revealed that TR4 suppressed LXR${\alpha}$ transcriptional activity, although LXR${\alpha}$ was unable to affect TR4 transcriptional activity. Moreover, adding TR4 resulted in reduced LXR${\alpha}$ binding to the LXR responsive element in a gel shift assay. Additionally, the suppressive effect of GW3965 on perilipin expression and lipid accumulation in 3T3-L1 adipocytes was abolished by TR4 overexpression. Taken together, our data demonstrate that TR4 plays an inhibitory role in LXR${\alpha}$-mediated suppression of lipid accumulation in 3T3-L1 adipocytes. This TR4 protective effect is mediated, in part, y blocking the suppressive effect of GW3965 on perilipin gene expression.

LXR 고아핵수용체 관련 신호 억제를 통한 연교의 sterol regulatory element-binding protein-1c 조절 (Forsythiae suspensa regulates SREBP-1c signaling pathway as mediated with LXR alpha nuclear orphan receptor)

  • 김영은;박선동;김영우
    • 대한한의학방제학회지
    • /
    • 제30권3호
    • /
    • pp.137-143
    • /
    • 2022
  • Objectives : Brain-Liver axis is an important target of the chronic human diseases. Hepatic steatosis is one of the most famous disorders in the chronic diseases. This study investigated the moderating effect of beneficial herbs on the fat accumulation, which is mediated by the LXR alpha-SREBP-1c signaling pathway. Methods : In order to confirm the SREBP-1c inhibitory effect, we performed immonoblotting ananlysis using HepG2 cells and Huh 7 cells treated by T0901317, the ligand of LXRα. Results : Forsythiae suspensa water extract (FSE) was not cytotoxicity in cell lines. FSE inhibited SREBP-1c protein expression in HepG2 and Huh7 cells induced by T0901317. In addition, FSE increased the phosphorylation of LKB1, which is associated with LXR-related pathway in HepG2 and Huh 7 cells. Conclusions : These results showed that FSE activated LKB1 to suppress SREBP-1c, which protects the cells against oxidative stress.

Constitutive androstane receptor (CAR)의 전사활성 저해제로서의 T0901317 (T0901317 as an Inhibitor of Transcriptional Activation of Constitutive Androstane Receptor (CAR))

  • 김현하;설원기
    • 생명과학회지
    • /
    • 제21권4호
    • /
    • pp.481-485
    • /
    • 2011
  • T0901317은 핵수용체 전사인자인 liver X receptor (LXR, NR1H2/3)의 강력한 합성 리간드이다. 그러나, T0901317은 farnesoid X receptor (FXR, NR1H4)와 pregnane X receptor (PXR, NR1I2)에 대해 작용물질(agonist) 로, androgen receptor (AR, NR3C4)와 rertinoid-related orphan receptor-${\alpha}$ (ROR-${\alpha}$, NR1F1)에 대해 길항제(antagonist)로 작용하여, LXR외에 적어도 다른 4종의 핵수용체에 대해 그 활성을 조절한다고 보고되었다. 우리는 T0901317이 또 다른 핵수용체인 constitutive androstane receptor (CAR, NR1I3)에 대해 저해제로 기능함을 확인 하였다. CAR는 이미 T0901317에 의해 기능이 조절된다고 알려진 PXR, FXR, LXR과 더불어 간에서 생체이물과 콜레스테롤의 대사작용에 중요한 역할을 하므로 T0901317에 의해 CAR의 활성이 조절된다는 사실은, 간세포에서 T0901317을 이용한 실험 결과를 해석할 때 세포 내에 이미 존재하는 이들 핵수용체 단백질의 영향을 고려하여 주의깊게 해석해야 함을 의미한다.

FXRα Down-Regulates LXRα Signaling at the CETP Promoter via a Common Element

  • Park, Sung-Soo;Choi, Hojung;Kim, Seung-Jin;Kim, Ok Jin;Chae, Kwon-Seok;Kim, Eungseok
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.409-414
    • /
    • 2008
  • The cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor ${\alpha}$ ($FXR{\alpha}$; NR1H4) down-regulates CETP expression in HepG2 cells. A $FXR{\alpha}$ ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner. Using gel shift and chromatin immunoprecipitation (ChIP) assays, we found that $FXR{\alpha}$ could bind to the liver X receptor ${\alpha}$ ( $LXR{\alpha}$; NR1H3) binding site (LXRE; DR4RE) located within the CETP 5' promoter region. $FXR{\alpha}$ suppressed $LXR{\alpha}$-induced DR4RE-luciferase activity and this effect was mediated by a binding competition between $FXR{\alpha}$ and $LXR{\alpha}$ for DR4RE. Furthermore, the addition of CDCA together with a $LXR{\alpha}$ ligand, GW3965, to HepG2 cells was shown to substantially decrease mRNA levels of hepatic CETP gene, which is typically induced by GW3965. Together, our data demonstrate that $FXR{\alpha}$ down-regulates CETP gene expression via binding to the DR4RE sequence within the CETP 5' promoter and this $FXR{\alpha}$ binding is essential for $FXR{\alpha}$ inhibition of $LXR{\alpha}$-induced CETP expression.

Jinan red ginseng extract inhibits triglyceride synthesis via the regulation of LXR-SCD expression in hepatoma cells

  • Hwang, Seung-mi;Park, Chung-berm
    • 한국식품과학회지
    • /
    • 제51권6호
    • /
    • pp.558-564
    • /
    • 2019
  • Hypertriglyceridemia is one of the metabolic syndrome that is often observed as a result of lipid abnormalities. It is associated with other lipids, metabolic disorders, cardiovascular disease and liver disease. Korean red ginseng is known to affect obesity, dyslipidemia, liver disease and liver function, but the mechanism of its effect is not clear. This study examined the beneficial effects of hypertriglyceridemia and the mechanism of action of Jinan red ginseng extract (JRG) in hepatoma cells. To measure the levels of triglyceride accumulation, we studied the expression of proteins and mRNAs related to lipidogenesis in hepatoma cells (Huh7 and HepG2). JRG decreases the lipidogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding proteins α (C/EBPα) and C/EBPβ which are major regulators of triglyceride synthesis in hepatoma cells. We also found that JRG reduced sterol regulatory element binding proteins 1c (SREBP-1c), C/EBPα and C/EBPβ by regulating liver X receptor (LXR) and stearoyl CoA desaturase (SCD) expressions. In addition, the first-limited step of synthesis triglyceride (TG), glycerol-3-phosphate (G3P) is decreased by JRG. These results suggest that the anti-hypertriglyceride effect of JRG in hepatoma cells could be accompanied with the inhibition of lipidogenic transcription factors by regulating LXR and SCD expression.

Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings

  • Kim, Seung-Jin;Choi, Ho-Jung;Jung, Chung-Hwan;Park, Sung-Soo;Cho, Seung-Rye;Oh, Se-Jong;Kim, Eung-Seok
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.787-794
    • /
    • 2010
  • Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR$\gamma$ and LXR$\alpha$, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR$\gamma$ and LXR$\alpha$ expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR$\gamma$ and LXR$\alpha$. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR$\gamma$ and LXR$\alpha$, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.

표피항상성과 건조피부의 관리 (Epidermal Homeostasis and Dry Skin Management)

  • 박장서
    • 대한화장품학회지
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 피부장벽을 포함한 표피층은 인체의 조직 가운데에서도 가장 역동적인 기관이다. 다시 말해서 끊임없이 새로운 표피세포의 형성, 분화 및 탈각과정이 반복되면서 표피항상성(epidermal homeostasis)을 유지한다. 표피항상성은 피부기능 가운데 가장 주요한 기능인 permeability barrier homeostasis의 확립으로 연결된다. Permeability barrier homeostasis는 각질층에서 이루어지며 이를 형성하고 유지하기 위해 매우 정교하게 조절되어야 한다. 표피항상성을 조절하는 핵심 조절인자로서 nuclear hormone receptor(NHR)가 중심에 있음이 최근 다양한 연구를 통해 입증되었다. 이들은 각질세포 특이적인 단백질, 즉, involucrin, loricrin 및 trans-glutaminase 1(TG 1) 등의 발현을 유전자 수준에서 조절할 뿐 아니라 표피 지질성분의 생합성을 증가시키는 등 피부장벽을 구성하는 brick 및 mortar의 생성과 유지에 핵심적 역할을 하는 것으로 알려졌다. NHR 가운데 peroxisome proliferator activator receptor(PPAR)와 liver X receptor(LXR)의 activator/ligands가 리놀레인산 등 지방산, leukotriene, prostanoid 및 oxygenated sterol 등이 지질대사과정에서 형성된 지질 종류인 까닭에 liposensor로도 알려지고 있다. 따라서 liposensor들을 비롯한 PPAR과 LXR activator/ligands들은 피부장벽기능이 저해된 아토피성 피부를 포함하여 건조피부를 관리하는 epidermotherapy의 수단으로서 잠재적 가능성이 있다고 생각된다.

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim;Myung-Ho Kim;Ji In Kang;Jong-In Baek;Byeong-Min Jeon;Ho Min Kim;Sun-Chang Kim;Won-Il Jeong
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.89-97
    • /
    • 2024
  • Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

  • Zhang, Guo Hua;Lu, Jian Xiong;Chen, Yan;Dai, Hong Wei;ZhaXi, YingPai;Zhao, Yong Qing;Qiao, Zi Lin;Feng, Ruo Fei;Wang, Ya Ling;Ma, Zhong Ren
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.797-806
    • /
    • 2016
  • Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. $LXR{\alpha}$ activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, $LXR{\alpha}$ activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, $LXR{\alpha}$ might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and $LXR{\alpha}$ activation enhanced these effects, suggesting $LXR{\alpha}$ mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.